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Abstract
One of the central challenge for extracting governing principles of dynamical system via Dynamic
Mode Decomposition (DMD) is about the limit data availability or formally called as limited data
acquisition in the present paper. In the interest of discovering the governing principles for a dy-
namical system with limited data acquisition, we provide a variant of Kernelized Extended DMD
(KeDMD) based on the Koopman operator which employ the notion of Gaussian random matrix
to recover the dominant Koopman modes for the standard fluid flow across cylinder experiment.
It turns out that the traditional kernel function, Gaussian Radial Basis Function Kernel, unfortu-
nately, is not able to generate the desired Koopman modes in the scenario of executing KeDMD
with limited data acquisition. However, the Laplacian Kernel Function successfully generates
the desired Koopman modes when limited data is provided in terms of data-set snapshot for the
aforementioned experiment and this manuscripts serves the purpose of reporting these exciting
experimental insights. This paper also explores the functionality of the Koopman operator when
it interacts with the reproducing kernel Hilbert space (RKHS) that arises from the normalized
probability Lebesgue measure 3`f,1,C= (z) B (2cf2)−= exp (−‖ z‖2/f) 3+ (z) when it is embed-
ded in !2−sense for the holomorphic functions over C=, in the aim of determining the Koopman
modes for fluid flow across cylinder experiment. We explore the operator-theoretic characteri-
zations of the Koopman operator on the RKHS generated by the normalized Laplacian measure
3`f,1,C= (z) in the !2−sense. In doing so, we provide the compactification & closable character-
ization of Koopman operator over the RKHS generated by the normalized Laplacian measure in
the !2−sense.
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1. Introduction

1.1. Dynamical Systems & Hilbert space
Dynamical systems provides the mathematical framework for the understanding of the phys-

ical reality in which we are preoccupied. Since about the conceptualization of the dynamical
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systems, the ability to characterize or achieving the best-possible prediction for the future state-
variables is the key challenge faced by various scientific practitioners across the field of engineer-
ing and significantly others. However, modern mathematical framework which includes machine
learning algorithms such as reduced-ordered modeling has now indeed, grown at such a fast pace,
especially in the past few decades, that these techniques are now regarded as the cornerstone to
develop the data-driven features of the dynamical systems.

3

3C
x(C) = f (x(C))︸                ︷︷                ︸

Dynamical System

Discretization
=⇒ FC (x(C0)) = x (C0) +

∫ C0+C

C0

f (x(t)) 3t. (1)

Machine learning architectures in artificial intelligence, in particular, deep learning and neural
networks (NN) usually offer a competitive platform to simulate and forecast complex, chaotic and
non-linear dynamical systems as demonstrated in Figure 2 for the Lorenz dynamical system (L63,
(58)) Figure 1.
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Figure 1: L63 dynamical system
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Figure 2: NN Simulation of L63 in G (C ) , H (C ) and I (C )−coordinates

However, deep learning architecture faces serious issues for instant dynamics changing con-
text as they lack the tendency to operate or evolve with respect to time (61; 83). The scope of
discovering intrinsic information from the dynamical systems evolving with respect to time per-
fectly aligns with the reduced-ordered modeling techniques via the operator-theoretic approaches
when intertwined with the theory of Hilbert spaces generated by the reproducing kernels (2)
RKHS. We define RKHS followed by the basic definition of kernel function.

Definition 1.1 (Kernel Function). Let - = ∅, then a function : : - × - → K is called the kernel
on - if there exists a K−Hilbert space (�, 〈·, ·〉� ) accompanied by a map Φ : - → � such that
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∀G, G′ ∈ - , we have

: (G, G′) = 〈Φ(G′),Φ(G)〉� . (2)

We regard Φ as the feature map and � as the feature space of : .

Example 1.2. Themost common kernel function that arises from the class of radial basis function²
(cf. (27)) used in modern machine learning and artificial intelligence routine such as speech
enhancement is the class of exponential power kernels (33; 41) given as

 
W,f
exp (x, z) B exp

(
−
‖x − z‖W2

f

)
; where W, f > 0 and x, z ∈ C=. (3)

The constants present in (3), that is, f is referred as kernel bandwidth and W is often called as
shape parameter. If W = 1 then we get  1,f

exp (x, z) B exp
(
− ‖x−z‖2

f

)
, which is referred as Laplace

Kernel. If W = 2 in (3), we get  2,f
exp (x, z) B exp

(
− ‖x−z‖2

2
f

)
, which is commonly referred as

Gaussian Radial Basis Function (GRBF) Kernel. We direct interested readers (68) to learn more
about the feature map of GRBF Kernel. It should be noted that the choice of kernel functions
can dramatically change the performance of the (supervised) machine learning routine (30; 31),
specifically in those situation when shorter training time or limited information is available.

We are now ready to define what RKHS is along with its necessary details and examples.

Definition 1.3 (Reproducing Kernel Hilbert Space). Let - = ∅ and (�, 〈·, ·〉� ) be the Hilbert
function space over - .

1. The space � is called as the reproducing kernel Hilbert space (RKHS) if ∀G ∈ - , the
evaluation functional EG : � → K defined as EG ( 5 ) B 5 (G), 5 ∈ � is continuous.

2. A function : : - × - → K is called reproducing kernel of � if we have:

(a) : (·, G) ∈ � ∀G ∈ - , that is ‖: (·, G)‖� < ∞, and
(b) : (·, ·) has the reproducing property; that is

5 (G) = 〈 5 , : (·, G)〉� ∀ 5 ∈ � and G ∈ -.

It is worth-full to mention that the norm convergence yields the point-wise convergence inside
RKHS. This fact can be readily learned due to the continuity of evaluation functional. This is
demonstrated as follows for an arbitrary 5 ∈ � and { 5=}= ∈ � with ‖ 5 − 5=‖� → 0 as = → ∞,
then

lim
=→∞

5= (G) = lim
=→∞

EG ( 5=) =(continuity of EG ) EG ( 5 ) = 5 (G).

²A function Φ : R= → R is called as radial if there exists a univariate function q : {0} ∪ R+ → R such that

Φ (x) = q (A ) , where A = ‖x‖ .

Here, ‖ · ‖ is some norm defined on R=, usually ‖ · ‖2 which is Euclidean norm.
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Theorem 1.4 (Moore-Aronszajn Theorem (2)). Let � be an RKHS over an nonempty set - ,
Then : : - × - → K defined as : (G, G′) B 〈EG , EG′〉� for G, G′ ∈ - is the only reproducing
kernel of �. Additionally, for some index set I, if we have {e8}8∈I as an orthonormal basis then
for all G, G′ ∈ - , we have

: (G, G′) =
∑
8∈I

e8 (G)e8 (G′), (4)

with an absolute convergence.

Example 1.5. In this example we present the RKHS for the GRBF Kernel by considering a holo-
morphic function 5 : C= → C. Then, we define the norm as

‖ 5 ‖2
f B

2=f2=

c=

∫
C=

| 5 (z) |24f2 ∑=
8=1 (I8−I8 )

2
3+ (z), (5)

where 3+ (z) is the usual Lebesgue volume measure on C= ≡ R2=. The RKHS for  2,f
exp (x, z) is

given as follows:

�f B { 5 : C= → C : 5 is holomorphic and ‖ 5 ‖f < ∞} . (6)

We appeal interested readers to follow (96; 97) more for the RKHS on GRBF Kernel.

If, for instance, let :G′ (G) = : (G, G′) in (4), then we have an important result for the RKHS in
terms of a weakly converging sequence. As a matter of fact, the sequence is weakly convergent
if and only if it is bounded in norm and it converges point-wise. Upon the use of this, we can
formulate following lemma.

Lemma 1.6 (Lemma 2.4 in (57)). Let � be the RKHS as defined in Definition 1.3 over C= and
let :G be its reproducing kernel. Then, following holds for the RKHS �:

1. lim‖G ‖→∞ :G/‖:G ‖ = 0;

2. let a" be a sequence converging weakly to 0 in C= (that is, in particular, a" is bounded).
For each " , put 5" (z) = 〈z, a"〉 for z ∈ C=, then lim"→∞ 5" = 0 weakly in �.

It should be noted that for the RKHS � with reproducing kernel :G and its reproducing prop-
erty (rp), we have following result:

‖:G ‖2 = 〈:G , :G〉�
rp
= :G (G) = : (G, G). (7)

1.2. Interface between Operator theory & Dynamical System
Koopman operators or Composition operators theory by Bernard Koopman in 1930’s pro-

vides an alternative mathematical framework at the operator theory level to understand the com-
plex high-dimensional systems. At-least at the historical perspective, this operator theoretic
framework was majorly borrowed by the traditional composition operators approaches when it
interacts with Hilbert spaces. It comes to the very strange understanding of the fact that the de-
sire of determining the eigen-observables of the composition operators is as old as early 1840’s
due to Ernst Schröder’s work in (89) but it was Koopman’s contribution in (52) which made
composition operators synonymous to Koopman operators that we now know of today.

To this end, we define the Koopman operator as follows followed immediately by the following
necessary assumption.
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Assumption 1.7 (Sampling-flow assumption). Let M be a metric space and FC : M → M be
the flow as defined in (1) along with the Borel-probability measure ` whose support supp ` = - .
Let the system be sampled at a fixed-time-instant, say ΔC (> 0) such that F=ΔC : M → M.

Definition 1.8 (Koopman Operators). In the light of action of Assumption 1.7, the obvious choice
of observables of dynamical system is the Lebesgue-square integrable functions with respect to
the measure `, that is !2 (`). !2 (`) is the Hilbert space equipped by the inner product as
〈 5 , 6〉!2 (`) =

∫
-
5 (·)6∗ (·)3`(·). The other natural selection for the Hilbert space can be the

RKHS. The dynamical flow FC induces a linear map KFC on the vector space of complex-valued
functions onM and on - defined as

KFC : !2 (`) → !2 (`) via
=⇒ KFC6 B 6 ◦ FC .︸ ︷︷ ︸

Composition

(8)

We can also provide the continuous-time infinitesimal generator of the Koopman operator family
for the given dynamical system (1) as

�f6 B lim
C→0

KFC6 − 6
C

= lim
C→0

6 ◦ FC − 6
C

. (9)

However, the time derivative of 6 in the direction of trajectories x(C) of dynamical system in (1)
yields

3

3C
6 (x(C)) = ∇6 · ¤x(C) = ∇6 · f (x(C)) , (10)

which if we equate in the following way

(10)︷                                     ︸︸                                     ︷
∇6 (x(C)) · f (x(C)) = 3

3C
6 (x(C)) = lim

t→0

6 (x(C + t)) − 6 (x(C))
t

= �f6 (x(C))︸                                               ︷︷                                               ︸
(9)

∴ �f6
def
B ∇6 · f. (11)

The operator ‘�f’ in (11) is called as the Liouville operator and is formally defined as follows
over the underlying Hilbert space, in particular RKHS �.

Definition 1.9 (Liouville Operator). Consider the dynamical system in (1) where f : R= → R=

is Lipschitz continuous. Let � be a RKHS over the non-empty compact set - ⊂ R=. Then, the
Lipschitz continuous dynamics f induces a linear map �f with its natural symbol as f defined as

�f : D (�f) → �
via
=⇒ �f6 = ∇6 · f, where

D (�f) B {6 ∈ � : ∇6 · f ∈ �} .

The Liouville operator was introduced by Rosenfeld and his collaborators in the year 2019
in (74) to understand the complex theory of system identification. The main difference between
the Liouville operator and the Koopman operator is how the dynamics get encapsulated by these
operators. As such, it is worthwhile to mention that the Liouville operator �f directly encapsulate
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the dynamics, on the other hand, the Koopman operator KF encapsulate the flow of the dynamics
which needs the dynamics to be discretizable.

In what follows, a formal relationship between the eigen-observables of Koopman operator
with the possibility of model reduction for high-dimensional dynamical systems was devised by
Mezic in (60; 62). In the interest of performing reduced ordered modelling via either Proper
Orthogonal Decomposition or Principal Component Analysis for a high-dimensional dynamical
systems such as turbulent flow, extracting the spatio-temporal modes of the system remains a
central challenge since either of these two techniques are unable to preserve these modes as the
system evolves with respect to time. Hence, realizing this critical issue, it led to the development
of physical and mathematical framework of Dynamic Mode Decomposition (DMD).

DMD was formulated by Schmid in (85) along with its other parallel variants in (86; 87)
etc. to address the issue for the identification of spatio-temporal coherent structures for high-
dimensional time series data in the fluid community area, in particular cavity flow and jet flow.
Contemporary to the work of Schmid in (85) in 2009, around the same period, Rowley and
Mezic together with their collaborators in (77) carved out indispensable connections between
DMD and the spectral-observables of Koopman operators and demonstrated their results on a
jet in cross-flow. DMD with other of its variants such as DMD with control (DMDc) (67) or
multi-resolution DMD (mrDMD) (55) finds extensive applications in characterizing epidemio-
logical systems and fluid turbulence respectively. Recently, Song and their collaborators in (109)
demonstrated the applicability of DMD as a new approach to dynamic model the nonlinear de-
formation behavior of soft tissue.

Collectively, the notion of casting the non-linear dynamical systems into the Koopman oper-
ator, indeed allows DMD to accurately characterize periodic/quasi-periodic behavior given that
enough acquisition of data is ensured beforehand. When the dynamical system is initiated by the
large set of state variables, then Kernelized extended DMD (KeDMD) (103) methods are invoked
which are motivated by the kernel-trick (88) of some appropriatly chosen RKHS, which intrin-
sically approximates the DMD measurements via the evolution operator AY in y:+1 = AY y: (cf.
(10, Page 327)). Looking ahead to the spectral convergence of the Koopman operators to identify
the governing features of the complex dynamical systems via DMD, the convergence exhibits in
the strong operator topology (SOT) (53) which is significantly similar as the point-wise conver-
gence (39, Chapter 13). However, in the pursuit of achieving better convergence then SOT, one
can identify the spectral information of the Liouville operators which provide the norm conver-
gence (34; 47; 63; 71–73; 76; 80).

1.3. What this paper offers?
Following is the practical utility of the present paper:

1.3.1. Motivation for this paper
Modern data science is unarguably going through a phase which can be easily called as a

data revolution, where scientific machine learning algorithms such as DMD and its related vari-
ants are helping in creating data-driven models to comprehend the understanding of complex
dynamical system. As such, we have already learned the importance of DMD in various scien-
tific and engineering field as presented in before in this paper with obvious important references
included, however, we also simultaneously see that we lack a proper and robust framework which
can execute the same if enough data-set or enough number of snapshot is not present. Lack of
investigation in this direction motivates the need of this paper, which provide the solution to this
problem by taking the advantage of Kernelized eDMD and random matrix theory.
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1.3.2. Offerings of this paper
We immediately provide the offerings of the current work which is in the direction of de-

veloping a novel methodological setup to execute the Kernelized eDMD but with limited data
acquisition. Here we describe the chief contributions of this paper:

1. This paper studies the operator theoretic interactions of the Koopman operators over the
RKHS of holomorphic functions which is generated by the normalized Laplacian mea-
sure 3`f,1,C= (z) in the traditional !2−sense given in (19). In particular, we are interested
in determining the compactification behaviour of the Koopman operators over the newly
developed RKHS associated with the Laplacian measure. In doing so, we demonstrated
meticulously that how the Koopman operators are essentially going to act boundedly over
the RKHS of the normalized Laplacian measure. Then we also investigates the essential
norm estimates for the Koopman operators. Upon the optimization of the essential norm
estimates for the Koopman operators over RKHS of the normalized Laplacian measure, we
eventually prove that the desired compactification of the Koopman operators.

2. Being the ability of the Koopman operators that they can be compact over the RKHS of
the normalized Laplacian measure, it immediately allow us to extract the finite rank repre-
sentation of the Koopman operators over the RKHS of the Laplacian measure. Thus, once
we are aware of this structure, we can proceed further to perform the eDMD with limited
data acquisition by using the Koopman operators and RKHS of the normalized Laplacian
measure.

3. It should be noted that at the time of this research investigation, we do not have any refer-
ence in which the both reproducing kernel and the corresponding RKHS of the normalized
Laplacian measure are discussed. Therefore, this manuscript immediately takes the ac-
tion of developing the theory on grounds for the Laplacian measure acting in the !2−sense
over the holomorphic functions in multivariate case over the complex plane. In doing so,
this manuscript provides following Hilbert function space theory details for the Laplacian
measure:

(a) Inner product formulation for the Hilbert space arising from the Laplacian measure,
(b) Establishment of point-evaluation inequalitywhich leads to the formation of the RKHS

from the Laplacian measure,
(c) Determination of the orthonormal basis of the Hilbert space generated by the normal-

ized Laplacian measure,
(d) Formulation of the closed-form-expression of the reproducing kernel for the RKHS

generated by the normalized Laplacian measure,
(e) Determination of the weakly converging sequence in the RKHS of the normalized

Laplacian measure followed by the bounds (both lower and upper) for the norm of
reproducing kernel of the RKHS generated by the normalized Laplacian measure.

4. We also investigated the property of the Koopman operator to be closable over the newly
generated RKHS from the normalized Laplacian measure, which helps making this RKHS
as novel and non-trivial choice for the data-science practice in the light of limited data
acquisition. It was first pointed out by (43) to exhibit the closable nature of the Koopman
operators as a desirable operator property of it over the underlying Hilbert spaces which
later on noted by (16, Page 43) as a tough task to circumvent through.
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1.3.3. Detail plan of the paper
Needlessly to say that the paper is quite lengthy and this is perhaps due to the fact that many

of mathematical details and technicalities are not present in the ready-to-use perspective. After
that we have described the key offerings of this paper, we present now the detailed plan of the
paper which addresses these offerings.

The rest of the paper immediately opens up with reviewing the Kernelized Extended Dynamic
Mode Decomposition in Section 2 and also we understands the notion of limited data acquisition
and Gaussian random matrix theory can help constructing the data matrix. This is where we pro-
vide the algorithm to perform the Laplacian Kernel variant of eDMD coupling with Gaussian ran-
dom vectors along with certain theoretical justifications in Proposition 2.15 and Proposition 2.16.
The algorithm provided in this section is can be readily taken in hand to perform the experimental
study for fluid flow across cylinder experiment, which is performed in Section 5. However, to get
to that section, one has to perform the detail analysis of the RKHS generated by the Laplacian
Kernel Function when it is viewed as in !2−measure sense and then how the Koopman operator
acts on this RKHS. Both of the study is performed simultaneously in the respective sections of
Section 3 and Section 4. Lastly, we show why the Laplacian Kernel and its corresponding RKHS
is novel in Section 6 by determining the sequence of functions which makes Koopman operators
to act closable in contrast to any other kernel function and its RKHS such as Gaussian Radial
Basis Kernel Function.

2. DMD with Limited Data Acquisition

We provided various versions of DMD in the introduction, however, the present research in-
vestigation smooth aligns with one of the variant of DMD which relies on the choice of the repro-
ducing kernel and its corresponding function space, which often, as already mentioned, is referred
RKHS. The kernel variant of eDMD has one very strong benefit, that it has the strong ability to
handle the curse of dimensionality. Thanks to the kernel-trick, which is a natural nature offered by
the reproducing kernel. The ideology for extracting the dominant pieces of information from the
time-changing physical phenomena is the approximation of Koopman operators by embedding
it in the RKHS via its corresponding reproducing kernel functions and this can be immediately
observed in (1; 3; 11; 22; 23; 28; 32; 49–51; 66; 105).

2.1. Extended Dynamic Mode Decomposition
Now, that we have already provided the exposure of the dynamical systems in the RKHS

setting via the action of the Koopman operator, we recall one of the variant of DMD which exploits
the direct use of the Koopman operators over the choice of the RKHS, i.e. the extended-Dynamic
Mode Decomposition (eDMD) (48; 102).

2.1.1. Review of eDMD
Our algorithm for the data-driven discovery heavily relies on the setting of the eDMD and

this strongly motivates us to review the eDMD which is followed by the definition of the data-set
of snapshots.

Definition 2.1. Consider (=,M,F) be the discrete dynamical system where = ∈ Z is time M ⊆
R= is the state space and x ↦→ F(x) is the dynamics. Then the data-set of snapshots of pairs
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corresponding to the discrete dynamical system (=,M,F) is given as following:
| | | |

x1 x2 · · · x<
| | | |


x ↦→F(x)
↦→


| | | |

F(x1) F(x2) · · · F(x<)
| | | |


y=F(x)
B


| | | |

y1 y2 · · · y<
| | | |

 . (12)

With a slight abuse of notation to the Koopman operator as K (instead of KFC in (8)), we
understand that the Koopman operator acting on the observable q : M → C as

Kq(x) = q ◦ F(x) = q(F(x)),

yields a brand new scalar valued function that gives the value of q one-step ahead in the future
against the discrete dynamical system (=,M,F), where = ∈ Z, M ⊆ R# and x ↦→ F(x). In
the natural interest of determining the Koopman spectra-observables i.e. Koopman eigen-values
(`:) and Koopman eigen-functionals (i:), they are also accompanied by the Koopman modes
(ξ:) of a certain vector valued observable g : M → R#> , (#> ∈ N), which is refer as the full
state observable given as g (x) = x. Further, one can have a following decomposition in terms of
the aforementioned the triple eigen-values, eigen-functionals & modes of the Koopman operator
corresponding to the (unknown) dynamics x ↦→ F(x):

x =

#:∑
:=1

ζ:i: (x), F(x) =
#:∑
:=1

`:ζ:i: (x),

where, supposing that #: is the number of tuples required for the re-construction of the system
from the data of the dynamical system.

In the light of choosing scalar observables for the eDMD process, we will define the important
notion of feature map and feature space as follows:

Definition 2.2. The eDMD is provided the choice of scalar observables and for that let F be
the appropriate choice of scalar observables (such as RKHS). To do this, let k: : M → R for
: = 1, . . . , #: under the assumption that span(F#: ) ⊂ F . In particular, the space of scalar
observables is approximated using {k:}#::=1 functions then feature space is R#: . Additionally,
the feature map ψ will be the ‘stacked’ column vector of entries {k:} formally given as follows:

ψ (x) =


k1 (x)
k1 (x)
...

k#: (x)


.

With the feature space R#: and considering the value of any functions q, q̃ ∈ F#: , where
(again) spanF#: ⊂ R#: , one can define the evaluation of both q and q̃ against the inner product
with certain coefficient vector a and ã in C#: :

q (x) = 〈a,ψ(x)〉R#: = ψ(x)>a =

#:∑
:=1

0:k: (x)

q̃ (x) = 〈ã,ψ(x)〉R#: = ψ(x)> ã =

#:∑
:=1

0̃:k: (x).
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It should be noted that the goal of the eDMD is to employ the pair of data-set of snapshots defined
in (12) to generate the compactified³ version of the Koopman operator denoted by K ∈ R#:×R#:
for some given coefficients a and ã such that r =

(
Kq − q̃

)
∈ F , is minimum. We now provide

the algorithm of eDMD.

Algorithm 2.3. The algorithm for the extended-Dynamic Mode Decomposition is given as follows:

Step 1 With the pair of data-set of snapshots as defined in (12), compute the following observation matrices
with respect to the scalar observables (kernel) ψ:

	x ,


ψ (x1)>
ψ (x2)>

.

.

.

ψ (x" )>


, 	y ,


ψ (y1)>
ψ (y2)>

.

.

.

ψ (y" )>


,

where 	x and 	y constitutes the matrix in R"×#: .

Step 2 Compute the following two matrices:

G = 	>
x 	x =

"∑
<=1

	 (x<)	> (x<)

A = 	>
x 	y =

"∑
<=1

	 (x<)	> (y<) .

Step 3 Determine the pseudo-inverse of G and denote it by G(−)p.

Step 4 Determine K by setting

K , G(−)pA.

In the spirit of singular value decomposition (SVD) based DMD via (85), the SVD of 	x can
be used to construct a matrix similar to K; this is given as follows:

Proposition 2.4. Let the SVD of 	x takes the following mathematical structures:

	x , Q�Z>,

where Q and � ∈ R"×" and Z ∈ R#:×" . The pair of non-negative ` and v̂ are respective an
eigenvalue and eigenvector of

K̂ ,
(
� (−)pQ>

) (
	y	

>
x
) (

Q� (−)p
)
=

(
� (−)pQ>

)
Â

(
Q� (−)p

)
, (13)

if and only if ` and v = Zv̂ are an eigen-value and eigen-vector of K.

Now, that we have defined the basic ingredients including the action of the Koopman operator
on the discrete dynamical system for the eDMD, we present the reproducing kernel variant of the
eDMD.

Algorithm 2.5. The eDMD powered by the reproducing kernel function  (·, ·) is given as follows:

³finite rank representation of the infinite dimensional Koopman operator
10



Step 1 In the light of data-set snapshots given in (12), choose the reproducing kernel function  (·, ·), which
generate the corresponding and unique RKHS.

Step 2 Compute the elements of Ĝ B
[
Ĝ

]
8× 9 and Â B

[
Â

]
8× 9 that are defined as follows:[

Ĝ
]
8× 9 =  

(
x8 , x 9

)[
Â

]
8× 9 =  

(
y8 , x 9

)
.

Step 3 Determine the spectral observables of the Gram-matrix Ĝ, i.e. Q and �.

Step 4 Construct K̂ via (13).

In (102), the choice of kernel function were the polynomial kernel function which is given as
 U (x, y) = (1 + 〈x,y〉/32)U and the Gaussian Radial Basis Kernel Function. Apparently, for some
reasons the aforementioned kernel functions has always been the general choice of performing
the DMD which involves the computation of Gram-matrix Ĝ, for example in (73).

2.2. On Limited Data Acquisition
All the variants of DMD expects to run on the availability of data-set snapshots that we have

defined formally in (12) under the additional assumption that moderate number of snapshots are
actually provided. Explicitly, in (12), we can see that we have a total of <−data snapshots for
the discrete dynamical system (=,M,F) given in Definition 2.1. Now, the question in which
we are interested is that would we be able to perform the extended-DMD if only limited data-
set snapshots are available for any general discrete dynamical system. Following is the simple
definition for the limited data acquisition on which the present paper is based upon.

Definition 2.6. For the general discrete dynamical system (=,M,F) as given in Definition 2.1,
we regard the data-set snapshots as ideally the full data acquisition, in which we have, here, as
<−snapshots. If, we have the same data-set snapshots but for some positive<0 ∈ Z+ which satisfy
<0 < <, then we simply say these data-set snapshots as limited data acquisition.

Example 2.7. For the standard fluid flow across cylinder experiment (as such in (4) etc.) with
its Reynolds number as 100 in (54), there are 151−data-set snapshots and each snapshot is the
column vector whose dimension is 89,351. In this case, the full data acquisition corresponds
to data-set snapshots of matrix of dimension 89,351-by-151. However, for the same physical
experiment, if we have data-set snapshots of matrix whose dimension is 89,351-by-<0, where
0 < <0 < 151, then we will regard it simply as the limited data acquisition.

Besides the crucial challenge of uncertainty in knowing the about the exact mathematical
structure of f in (1) that governs the concerned dynamical system, the next immediate challenge
that we face in the theme of data-driven science is about the information of dynamical system
when we do not have the luxury of enough data-set snapshots. It turns out that for the data-driven
methodology, one can use the knowledge from the important topics of random matrix theory
(26; 98) to construct the data-driven models for the related dynamical systems.

2.3. Using random matrix theory for limited data acquisition
Assuming that the case of limited data acquisition in the direction of Definition 2.6 for a certain

dynamical system in which 0 < <0 < < for the data-set snapshots as in (12), we will construct a
data-set snapshots matrix in which random vector from certain probability density function will
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be drawn and augmented so that the final matrix of the data-set snapshots eventually contains
(again) < column vectors (snapshots).

Figure 3: A conceptual diagram to intercept the different notions of data acquisition. The very-first matrix in the
extreme left symbolised the ideal or at-least expected condition of having-supposedly <−snapshots. The unfortu-
nate situation of acquiring only <0−snapshots out of those <−snapshots is depicted in the middle figure. In order to
construct the ideal situation matrix in which <−snapshots are present, a simple padding of < − <0 random vectors is
inserted and this is symbolized in extreme right.

2.3.1. Preliminary to the Random Matrix Theory
The ensembles of well studied random matrix for example manova, Gaussian, & Wishart

etc. from the realm of random matrix theory has always played an integral role in various areas
of mathematical probability and its application in mathematical physics (13; 44; 59; 108). We will
present the definition of the Gaussian random matrix ensemble in the interest of our experiment.

Definition 2.8 (Gaussian Random Matrix (26)). For some positive integers< and =, the Gaussian
random matrix �1 (<, =) is simply the < × = matrix of independent and identically distributed
standard random normals. If A is the Gaussian random matrix of < × = dimension, then its joint
element density is given as follows:

1
(2c)<=/2

exp
(
−1

2
‖A‖2

�

)
, (14)

where ‖ • ‖� is the Frobenius norm.

More concretely, one can also define the probability density function for some random vector
- in more rigorous way as follows.

Definition 2.9 (Multi-variate Gaussian random vector (99, Definition 3.2.1; Page 26)). Let - B
(-1, . . . , -=) be a random vector. Then we say that - is a Gaussian random vector if we can
write - = µ + AZ, where µ ∈ R=, A is = × :−matrix and Z is a :−vector of independently
identically distributed standard normal random variables. We use the notation - ∼ N= (µ,�)
where � = AA>, to imply that - is the Gaussian random vector whose distribution is determined
by µ and �. We also say that - ∼ N= (µ,�) is non-degenerate when � = AA> is is positive
definite (equivalently invertible).

In the case, when x̃= ∼ N= (µ,�) and is non-degenerate, then the probability density function
of - is given as

pdfx̃= (x0) =
1

(2c)=/2 |�|1/2
exp

(
(x0 − µ)>�−1 (x0 − µ)

)
, (15)

for all x0 ∈ R=.
12



2.3.2. Choice of random matrix
It should be noted that there are several choices of considering random matrix other than

what we have described for the Gaussian random matrix in either of the definitions given above.
The most important property of (any) Gaussian random matrix is its orthogonal in-variance (26)
which means that if A is a Gaussian random matrix, then one fails to distinguish among &1 A,
A and A&2, where &1 and &2 are non-random orthogonal. The other choices of random matrix
that one can use could be Uniform random matrices & Rademacher matrices (40), however the
empirical evidence in the present manuscript establishes that augmenting the data-set snapshots
with the Gaussian random matrix yields better results in contrast with any other random matrix.

Now, we will present the compelling theory behind the process of augmenting the data-set
snapshots when limited data acquisition holds with the Gaussian random vector whose probability
density function in general is given in (15).

2.4. Theory for augmenting data-set snapshots with random matrix
As Figure 3 already demonstrates about the situation of limited data acquisition in which we

tend to augment the data-set snapshots matrix with the suitable matrix size of random matrix, in
particular Gaussian random matrix to mimic the exact correspondence of full data acquisition.
However, the figurative description is merely not enough to explain how one can simply augment
the data-set snapshots matrix with Gaussian random matrix and resume the Kernelized eDMD
process to extract the governing feature of the underlying dynamical system. In particular, in
doing so, we encounter with following two crucial questions which needed to answered in the
best-robust possible way.

Question 2.10. Does there exist a subspace inside a measurable space on which the sub-sequence
of snapshots generated by the discrete dynamical system x=+1 = F(x=) (here, y= B x=+1 in
(12)) can be made arbitrarily close to the Gaussian random vector x̃= whose probability density
function is defined in (15)? Precisely, if the observables is in the domain of Koopman operator as
!2 (`) over a measurable space - , then given that the sequence of observables {g" }" → pdfx̃=
almost everywhere over !2 (`), then does this convergence happens in measure as well?

If x= is the actual =−th snapshot which is evolved by the above discrete dynamical system,
and let x̃= be Gaussian random vector whose probability density function is pdfx̃= , then the above
question is simply asking that can the difference between these two vectors can be made arbitrarily
small in measure-theoretic sense. If so, then the answer (given in Proposition 2.15) to this provide
the immediate justification of using the Gaussian random matrix of appropriate matrix dimensions
in the light of limited data acquisition.

Question 2.11. If x= is supposedly the actual =−th snapshot evolved by the above discrete dynam-
ical system, and let x̃= be Gaussian random vector whose probability density function is pdfx̃= ,
then is it possible to minimize the difference between the observable 6 evaluated at x= and this
pdfx̃= as the difference between x= and x̃= is negligibly small?

The above question is raising the concern for the interpretation of the probability density
function as the choice of some observable space on which the Koopman operator K can act
upon, when we have constructed the data-set snapshot matrix by augmenting, here with Gaussian
random vector at the =−th snapshot entry. If so, then the answer (given in Proposition 2.16) to
this question allow us to treat the probability density function for the Gaussian random vectors to
interpret as the observables for the Koopman operators.

Now, finally we provide the solutions and answers to these question as follows.
13



2.4.1. Answer to Question 1
To answer the Question 2.10, we need to recall the notion of convergence in measure. It is

done so as follows:

Definition 2.12. Let ` be a positive measure on measurable space - . A sequence 5# of complex
measurable functions on - is said to converge in measure to the measurable function 5 is to every
n > 0 there corresponds an # such that

` {G ∈ - : | 5# (G) − 5 (G) | > n} < n,

for all n > # . The notation that we use to symbolize convergence of 5# to 5 in measure is
5#

`
→ 5 .

The important application of the notion of convergence in measure is capture in following
theorem, whose proof can be found in the standard references such as Scheffeé’s Lemma from
(101, Page 55) or (84) or (78, Probelm 18, Page 74). The following characterization is needed for
this manuscript to provide the convergence in measure.

Theorem 2.13. Let 5# be sequence of ! ? (`) functions as defined in Definition 2.12 and if
‖ 5# − 5 ‖!? (`) → 0 then 5# → 5 in measure.

We would like to recall an important measure theory related fact, which is true for any general
! ? spaces with respect to (positive) `−measure and 1 ≤ ? < ∞. However, here we stated only
for ? = 2 case.

Lemma 2.14. Let ( be the class of all complex, measurable, simple functions on the !2 (`)
measurable space - such that for B ∈ (, ` {G ∈ - : B(G) ≠ 0} < ∞. Then, ( is dense in !2 (`).

We provide the following proposition which provides the conclusion that how x# can get
arbitrarily close to the x̃# which follows the multivariate Gaussian probability density function
and ultimately answering the Question 2.10. Essentially the following proposition can be realized
as the nice application of the aforementioned Lemma 2.14.

Proposition 2.15. Let {g" }" be the sequence of real (or complex, if needed) measurable func-
tions on - whose domain is the range of FC as in Assumption 1.7 or as in x=+1 = F(x=). If
{g" }" → pdfx̃= almost everywhere in !2 (`) −sense where pdfx̃= is the probability density
function for the Gaussian random vector x̃= as given in (15), then {g" }" converges to pdfx̃= in
measure.

Proof. Define ( as in Lemma 2.14 and let n8 > 0 for 8 = 1 and 2. We begin by assuming that the
sequence of {g" }" that are defined on locally compact Hausdorff measurable space - such as
R=. Now, fix " ∈ Z+ and for this g" defined over locally compact Hausdorff measurable space
- , we have s" ∈ ( so that g" = s" except on a set of `-measure < n1 for this fixed " . Also,
|g" | ≤ ‖s" ‖∞ by the direct virtue of the Lusin’s theorem⁴ (cf. (78, Page 55)). Hence,

‖g" − s" ‖!2 (`) ≤ 2n 1/2
1 ‖s" ‖∞.

⁴Suppose 5 is a complex measurable on a measurable space -, ` (�) < ∞, 5 (G ) = 0 if G ∈ �, and n > 0. Then there
exists a 6 ∈ �2 (-) such that ` ({G : 5 (G ) ≠ 6 (G ) } ) < n . Furthermore, we may arrange it so that supG∈- |6 (G ) | ≤
supG∈- | 5 (G ) |.
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Similarly, for the probability density function pdfx̃= for the Gaussian random vector x̃= defined
over the locally compact Hausdorff measurable space - (again) such as R=, we have s ∈ ( so that
pdfx̃= = s except on a set of measure < n2. Additionally, | pdfx̃= | ≤ ‖s‖∞ by employing the
Lusin’s theorem. Hence,

‖ pdfx̃= −s‖!2 (`) ≤ 2n 1/2
2 ‖s‖∞.

Let n > 0 such that max
{
n

1/2
1 ‖s" ‖∞, n

1/2
2 ‖s‖∞

}
< 4−1

(
n − ‖s" − s‖!2 (`)

)
. Now, observe that

‖g" − pdfx̃= ‖!2 (`) =‖g" − s" + s" − s + s − pdfx̃= ‖!2 (`)

≤‖g" − s" ‖!2 (`) + ‖s" − s‖!2 (`) + ‖s − pdfx̃= ‖!2 (`)

=‖g" − s" ‖!2 (`) + ‖s − pdfx̃= ‖!2 (`) + ‖s" − s‖!2 (`)

≤2n 1/2
1 ‖s‖∞ + 2n 1/2

2 ‖s‖∞ + ‖s − s‖!2 (`)

<2 · 2 max
{
n

1/2
1 ‖s‖∞, n

1/2
2 ‖s‖∞

}
+ ‖s" − s‖!2 (`)

<4 · 4−1
(
n − ‖s" − s‖!2 (`)

)
+ ‖s" − s‖!2 (`) .

The above calculation results into ‖g"−pdfx̃= ‖!2 (`) < n for some fixed " and as this n was arbi-
trary, we eventually see that ‖g" − pdfx̃= ‖!2 (`) → 0. Therefore, by applying the Theorem 2.13,
we have that {g" }" converges to pdfx̃= in measure. �

2.4.2. Answer to Question 2
We provide the solution for the Question 2.11 as follows which relies on the projection val-

ued measure form of the spectral theorem (70, Chapter 8, Thereom VIII.6, Page 263) and with
additional mathematical techniques from (38, Chapter 7 and Chapter 8).

Proposition 2.16. Consider the discrete dynamical system as x=+1 = F(x=) or as the FC defined
in Assumption 1.7 and let 6 be an observable function for the Koopman operatorK whose domain
is D(K) = !2 (`). Let 6= B 6(x=) and let the =−th Gaussian random vector x̃= is drawn by the
probability density function pdfx̃= (x0). Then following holds true

|6(x=) − pdfx̃= (x0) | → 0 where 6=
`
→ pdfx̃= .

Proof. The proof of the above theorem involves the detail involvement of the projection-valued
measure E defined over the support on the spectrum of K that is spec (K). For 6 ∈ D (K) =

!2 (`), we can have following in the same way as we have in (17, Section 2.1.2, Page 229),

6 =

(∫
T
3E(_)

)
6 and K6 =

(∫
T
_3E(_)

)
6.

In the spirit of above, one can have following in the light of pdfx̃= as follows:

pdfx̃= =

(∫
T
3E(_)

)
pdfx̃= and K pdfx̃= =

(∫
T
_3E(_)

)
pdfx̃= (16)
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The very-defining action of the Koopman operator allow us to write following for the observable
function 6

6 (x=) = [K=6] (x0) =
[(∫
T
_=3E(_)

)
6

]
(x0) . (17)

As from the general theory of probability density functions that they are !1−integrable with re-
spect to the (arbitrary) positive finite Borel `−probability measure, thus this implies that pdfx̃= is
in !2 (`)⁵ which is the observable space for the Koopman operator. Similarly for the pdfx̃= as an
observable, we have following:

pdfx̃= (x0) =
[
K= pdfx̃=

]
(x0) =

[(∫
T
_=3E(_)

)
pdfx̃=

]
(x0) . (18)

where the first equality in above is because of viewing the =−th Gaussian random vector x̃= as
the =−th snapshot and hence the relation of exponentiation the Koopman operator is justified.
The second equality in above is simply the continuation of what we attempted for any arbitrary
observable with the action of the Koopman operator to present in terms of its projected valued
measure. Now, that we have formulated the decomposition of both 6 and pdfx̃= according to the
spectral content of the Koopman operator K in (17) and (18), we can subtract both of them as
follows:

6 (x=) − pdfx̃= (x0) =
[(∫
T
_=3E(_)

)
6

]
(x0) −

[(∫
T
_=3E(_)

)
pdfx̃=

]
(x0)

=

[(∫
T
_=3E(_)

) {
6 − pdfx̃=

}]
(x0)

=⇒ |6 (x=) − pdfx̃= (x0) | =
���� [ (∫

T
_=3E(_)

) {
6 − pdfx̃=

}]
(x0)

����
≤

����(∫
T
_=3E(_)

)���� {6 − pdfx̃=
} ‖x0‖.

With 6= B 6(x=) as already defined and given that 6=
`
→ pdfx̃= let there exist an n > 0 such that{6= − pdfx̃=

} < n · (E(T)‖x0‖)−1. Hence the desired result holds. �

Now, we are ready to introduce the normalized Laplacian measure over C= formally through
which the corresponding RKHS will be constructed in the subsequent section of this paper.

2.5. Laplacian Kernel as !2−measure
As of now, the main challenge that we face while we try to understand the dynamical system

is limited data availability. Having stated that, in the theme of already-existing DMD algorithms,
surprisingly they do not provide a framework which deals with this challenge. Therefore, the
present goal of this manuscript is to perform the DMD in the interest of limited data acquisition
and analyze the developed framework for better understanding. To achieve this goal, we will
leverage the understanding of Koopman operators and its operator-theoretic behavior over the
RKHS.

⁵due to the ordering or set inclusion of various !? with respect to the finite Borel measure, follow (100).
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We will be considering the RKHS of holomorphic functions 5 : C= → C which are !2−inte-
grable over C= against the normalized-probability !2− measure 3`f,1,C= (z) given as:

3`f,1,C= (z) B (2cf2)−= exp
(
− ‖ z‖2

f

)
3+ (z), (19)

where f > 0 and z ∈ C= and ‖ z‖2 =
√
|I1 |2 + · · · + |I= |2 for z = (I1, . . . , I=) ∈ C=. Here, 3+ (z)

is the usual !2− measure over the entire complex plane C=.

2.5.1. A word on Laplacian Kernel viewed as !2−measure
This perspective of considering the RKHS is very-rich as it is based on determining the or-

thonormal basiswhich immediately builds the RKHS (2; 81; 82). This ideology recently garnered
attention in (93) to discuss the functionality of a new kernel function Generalised Gaussian Ra-
dial Basis Function Kernel on various AI learning architecture routine which was first introduced
in (92). Additionally, this way of studying the corresponding function spaces has its deep-rooted
history with quantization in quantum dynamic system in (8) which is referred as Gauge transfor-
mations.

Definition 2.17 (Gauge Transformations (8; 46; 65)). Consider a closed subspace ℌ of !2 (`)
over a measurable spaceΩ equipped by the positive measure `. If we get an essentially equivalent
function theory if we replace 5 by q 5 and ` by |q|−2` where q is any non-vanishing measurable
function, then this transformation is called as the Gauge transformation.

To provide more insights on this, we provide the following table Table 1 with various (yet
limited) various kernels that generate their corresponding RKHS.

Table 1: Kernel functions viewed as !2− measure via Gauge transformations

Reproducing Kernel Hilbert Spaces

Kernel via Reproducing

!2− measure Parameters Ref. |I | ↦→ ‖ · − · ‖2 Kernel

 ( ·, ·)

Domain

4−|z|/f f > 0 (15) 4−‖x−z‖2/f - C=

4−f |z|2 f > 0 (107) 4
−f‖x−z‖22 exp

(
fx> z

)
C=

4−f
2 |z|2 44

−f2
0 |z|2 −1 f > 0, f0 ≥

0
(93) 4

−f2 ‖x−z‖22 44
−f2

0 ‖x−z‖22 −1 ★ C=

|I |2/@−24−|I |
2/@

@ > 0 (75) -
∑
=

GI
Γ (=@+1) C

where ★ =
∑∞
#1 ,...,#==0 _# (x> z)# , cf. (93) for this. At this stage, we take the inspiration

from (15; 30; 31) to employ the Laplacian Kernel in the !2−measure theoretic sense into our
study for performing DMD with limited data acquisition. It should be noted that the practition-
ers in (7) demands the understanding of various kernel function, in particular Laplacian Kernel;
which eventually is fulfilled in (15; 30; 31) however their domain of action for the kernel function
is limited or should we say restricted to S=−1 B {x ∈ R= : ‖x‖2 = 1}. This is due to their in-
terest in collaborating their result with deep neural tangent kernel (NTK) (45). Following figure
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compiles with an interactive and attractive assembly of various exponential measure as mathemat-
ical functions which finds monumental application in powering machine learning and artificial
intelligence algorithms.

Figure 4: Interactive figure for inter-connection of various exponential type measures as depicted in Table 1.

2.6. eDMD algorithm with Limited Data Acquisition
The algorithm for the Kernelized eDMD with limited data acquisition is actually powered by

two key component. The first key component is using the Laplacian Kernel which is given as
 

1,f
exp (x, z) B exp

(
− ‖x−z‖2

f

)
and the second key component is augmenting the data-set snapshot

matrix by padding the Gaussian random matrix of appropriate matrix dimension in the case of not
having enough data-set snapshots. Once, this new data-set snapshot matrix is constructed, then
follow the already provided Kernelized eDMD algorithm in (102) or here given in Algorithm 2.5.

Algorithm 2.18. The eDMD with limited data acquisition executed by the Laplacian Kernel Function
 

1,f
exp (·, ·) and Gaussian random matrix is given as follows:

Step 1 Construct data-set snapshots matrix by padding appropriate number of Gaussian random vectors
whose probability density function is given as (15) or with joint density given as in (14). Let a finite
f > 0 is also chosen.

Step 2 Compute the elements of Gram-Matrix G B [G]8× 9 and Interaction-Matrix I B [I]8× 9 that are
defined as follows:

[G]8× 9 =  1,f
exp

(
x8 , x 9

)
[I]8× 9 =  1,f

exp
(
y8 , x 9

)
.

Step 3 Determine the spectral observables of the Gram-matrix Ĝ, i.e. Q and �.

Step 4 Construct K̂ via (13).

Remark 2.19. As one can easily observe that the above algorithm takes the direct advantage of
the Kernelized eDMD algorithm as given in (102; 103), however their work is either relied on the
choice of polynomial kernel function or the Gaussian radial basis kernel function and so other
kernel based DMD algorithm such as in (73; 76) where the aforementioned authors do not explore
the same with the Laplacian Kernel Function coupled with the nuances of random matrix theory.
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Most importantly, it is worth-while to mention that the solutions to the crucial concerns raised in
Question 2.10 and Question 2.11 which basically demands that how the Gaussian random matrix
can be used to construct the data-set snapshot matrix of the desired matrix size when only a few
number of snapshots are provided, helps in giving the robust justification of using the random
matrix theory. Additionally, the concerns in Question 2.10 and Question 2.11 can be thought
of as an underlying assumption to construct the data matrix so that the practitioner has enough
number of data-set snapshots to operate on via the Laplacian Kernel based eDMD.

Note 2.20. In this section, we developed the Laplacian Kernel based eDMDwhich uses the Gaus-
sian random vectors as its snapshots to discover the Koopman modes as directed in (13) in Propo-
sition 2.4. We will employ this algorithm to construct the governing features via the Koopman
modes of fluid flow across cylinder experiment (whose data acquisition related details are given
in Example 2.7) in which we will provide true 3, 7, 20, 55 and 151 number of snapshots out
of actual available 151−snapshots and each snapshot is a column vector of size 89, 351. As al-
ready discussed, the respective remaining numbers i.e. 148, 144, 131, 96 and 0 of snapshots
will be Gaussian random column vectors which will be augmenting the data-set snapshots ma-
trix. These results will directly be compared with the Gaussian Radial Basis Kernel Function as
well. These results will be immediately presented once we have demonstrated the compactifica-
tion of the Koopman operators over the RKHS generated by the normalized Laplacian measure
3`f,1,C= (z) in (19); this detailed analysis performed in the following two sections.

3. RKHS from the Laplacian measure

3.1. Preliminaries
Now, with enough inspiration to understand Laplacian Kernel in the perspective of !2−mea-

sure, we began to study the same after considering following two important notions, that will be
used quite often in this paper.

3.1.1. Notation
The set of natural numbers is denoted by either N or by Z+ and in union with 0 is denoted

by W, that is W B 0, 1, 2, . . .. We use Kronecker delta X=< on non-negative integers = and <
to depict that, X=< = 1 whenever = = < and X=< = 0 if = ≠ <. We denote a complex number
I = G + 8H where G and H ∈ R. With that I, its conjugate-part is given as I = G − 8H along with
its absolute value as |I |2 = I · I = G2 + H2. We reserve symbol K to treat with choice of fields
on which we will operate upon; in particular K can either be R or C. The multi-index notation is
employed as 9 = ( 91, . . . , 9=) and | 9 | = 91 + · · · + 9=. If z = (I1, . . . , I=) then z 9 = (I 911 , . . . , I

9=
= ),

and 3 z = 3I1 · · · 3I=.

3.1.2. Tensor Product Notation
We recall the tensor product between two functions, say 51, 52 : - → K given as 51 ⊗ 52 :

- × - → K. Then, for all G, G′ ∈ - the tensor product 51 ⊗ 52 is defined as 51 ⊗ 52 (G, G′) B
51 (G) 52 (G′).
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3.2. Function space corresponding to the Laplacian measure in !2−sense
As already stated that, we will be incorporating the Laplace Kernel  1,f

exp (x, z) for our DMD
study with limited data availability which takes inspiration from the fact that it outperforms deep
learning architectures when shorter training time is provided. It is not hard to comprehend that
we are in void of the understanding of reproducing kernel and RKHS perspective (in Table 1)
when Laplace Kernel is viewed as the Laplacian measure (19).

To that end, we provide the inner product between two holomorphic functions 5 : C= → C
and 6 : C= → C associated with this measure as:

〈 5 , 6〉f,1,C= B Nf,1,=

∫
C=
5 · 63`f,1,C= (z) , Nf,1,=

∫
C=
5 (z)6(z)4−

‖ z‖2
f 3+ (z). (20)

Here, ‘Nf,1,=’ is the normalization constant and its explicit value is
(
2cf2)−=. Once we have

define the inner product for the space, the square of the norm for holomorphic function 5 : C= →
C is:

‖ 5 ‖2
f,1,C= B

1(
2cf2)= ∫

C=
| 5 (z) |23`f,1,C= (z) , 1(

2cf2)= ∫
C=

| 5 (z) |24−
‖ z‖2
f 3+ (z). (21)

After defining the norm of the holomorphic function 5 : C= → C, we can have following as the
Hilbert function space.

�f,1,C= B
{
holomorphic function 5 : C= → C : ‖ 5 ‖f,1,C= < ∞

}
. (22)

As of now, we have collected basic yet useful facts regarding the Hilbert space �f,1,C= . Now, we
will formulate towards the orthonormal basis of this Hilbert space.

3.3. Orthonormal Basis
We will be providing the orthonormal basis for the Hilbert space �f,1,C= generated by the

measure 3`f,1,C= (z) embedded into the !2−measure. The following lemma directs us in that
direction.
Lemma 3.1. For f > 0, # and " ∈ W, we have

〈I# , I"〉f,C =

∫
C
I# I"4−

|I |
f 3�(I) = 2cf2f#+" (# + " + 1)!X#" ,

where 〈·, ·〉f,C is the same inner-product as given in (20) but over C.
Proof. We will initiate the process of proving this by employing the polar coordinate in C.

〈I# , I"〉f,C =

∫
C
I# I"4−

|I |
f 3�(I)

=

∫ 2c

0

∫ ∞

0
A#A"48 (#−" ) \4−

A
f A3A3\

=2cX#"
∫ ∞

0
A#+"+14−

A
f 3A

=2cX#"
Γ(# + " + 1 + 1)

(1/f)#+"+2

=2cX#"
(# + " + 1)!
(1/f)#+"+2

=2cf2f#+" (# + " + 1)!X#" .
20



Also, from the last step, we can immediately learn that the square of the length of monomial{
I#

}
#

with respect to the normalized Laplacian measure 4− |I |/f in the single-variable complex
plane C is

‖I# ‖2
f,C = 2cf2f2# (2# + 1)!.

�

As we have now determined the length of monomial above, we can now provide the orthonor-
mal basis of the �f,1,C= by incorporating the tensor-product notation; this is performed in the
following theorem.

Theorem 3.2. For f > 0 and # ∈ W, define {e# }# ∈W : C→ C by

e# (I) B

√
1

f2# (2# + 1)!
I# . (23)

Then the tensor-product system
(
e#1 ⊗ · · · ⊗ e#=

)
#1 ,...#=≥0 is the orthonormal basis of Hilbert

space �f,1,C= .

Proof. We establish our initial stage of result for single-dimension case to ease our understanding.
For this, let us show that {e# }# ∈W forms an orthonormal system. So, consider I ∈ C and let
", # ∈ W. Then,

〈e# , e"〉f,C

=

∫
C

e# (I)e" (I)3`f,C (I)

=
1

2cf2

∫
C

√
1

f2# (2# + 1)!
I#

√
1

f2" (2" + 1)!
I"4−

|I |
f 3�(I)

=
1

2cf2

√
1

f2# (2# + 1)!

√
1

f2" (2" + 1)!

∫
C
I# I"4−

|I |
f 3�(I)

=
1

2cf2

√
1

f2# (2# + 1)!

√
1

f2" (2" + 1)!
· 2cf2f#+" (# + " + 1)!X#" .

=

{
1 if # = "

0 otherwise
(use Lemma 3.1).

The above result concludes that {e=}=∈W is actually an orthonormal system with respect to nor-
malized Laplacian measure in complex plane C. Now, we have to establish that this orthonormal
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system is also complete. So, for this, pick 5 ∈ �f,1,C with 5 (I) = ∑∞
;=0 0;I

; and observe that

〈 5 , e# 〉f,C =
1

2cf2

∫
C
5 (I)e# (I)3`f,C

=
1

2cf2

√
1

f2# (2# + 1)!

∫
C
5 (I)I# 4−

|I |
f 3�(I)

=
1

2cf2

√
1

f2# (2# + 1)!

∞∑
;=0

0;

∫
C
I;I# 4−

|I |
f 3�(I)

=
1

2cf2

√
1

f2# (2# + 1)!

∞∑
;=0

0; · 2cf2f;+# (; + # + 1)!X;#

=
√
f2# (2# + 1)!0# .

For a given f > 0, since the constant
√

1
f2# (2#+1)! ≠ 0 for any # ∈ W, therefore this directly

imply that 〈 5 , e# 〉f,C = 0 if and only if 0# = 0, which results into 5 ≡ 0. Hence, {e# }# ∈W is
complete.

Now, we establish the same result but in =−dimensional case and to this end, we will employ
the tensor product notation subsubsection 3.1.2 by considering multi-index notation for #, " ∈
W as follows:

〈e#1 ⊗ · · · ⊗ e#= , e"1 ⊗ · · · ⊗ e"=〉f,C= =

=∏
9=1

〈e# 9 , e" 9
〉f,C.

Hence the orthonormality of
{
e#1 ⊗ · · · ⊗ e#=

}
#1 ,...#=∈,W= is established due to the orthonormal-

ity of each individual 〈e# 9 , e" 9
〉f,C. We still need to ensure that this =−dimensional orthonormal

system is complete. We observe

〈 5 , e#1 ⊗ · · · ⊗ e#=〉f,1,C= =

(
1

2cf2

)= ∫
C=
5 (z)e#1 ⊗ · · · ⊗ e#= (z)3`f,1,C= (z)

=

(
1

2cf2

)= ∞∑
;1 ,...,;=

0;1 ,...,;=I;,=,

where I;,= =
∫
C=

z;
(
e#1 ⊗ · · · ⊗ e#= (z)

)
3`f,1,C= (z). We further can simplify I;,= as:

I;,= =

∫
C=

z;e#1 (I1) ∧ · · · ∧ e#= (I3)3`f,C (I1) ∧ · · · ∧ 3`f,C (I=)

=

=∏
9=1

(∫
C
I
; 9

9
e# 9 (I 9 )3`f,C (I 9 )

)
=

=∏
9=1

(∫
C
I
; 9

9
I 9
# 9 3`f,C (I 9 )

)
=

=∏
9=1

(
2cf2f; 9+# 9 (; 9 + # 9 + 1)!

)
X; 9# 9 .
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Finally, (
1

2cf2

)= ∞∑
;1 ,...,;=

0;1 ,...,;=I;,= =
©«
=∏
9=1

√
f2# 9 (2# 9 + 1)!ª®¬ 0#1 ,...,#= .

The further result for completeness in =−dimension follows a routine procedure from single-
dimension case as already discussed before. �

Now, that we have determined the orthonormal basis for the Hilbert space �f,1,C= we will
use it to construct the reproducing kernel for �f,1,C= which eventually makes it the RKHS.

3.4. Reproducing Kernel
The result of the above theorem provides us the orthonormal basis for the RKHS �f,1,C= .

Once we have the information for the orthonormal basis of the RKHS, we can employ the Moore-
Aronszajn Theorem to construct the reproducing kernel for the associated RKHS. Therefore,
in the light of determining the reproducing kernel for �f,1,C= , the following theorem provides
the same for �f,1,C= by using the Moore-Aronszajn Theorem.

Theorem 3.3. For f > 0, let z = (I1, . . . , I=) and w = (F1, . . . , F=) be in C=. Then the
reproducing kernel for RKHS �f,1,C= is given as

 fw (z) =  f (z,w) B
sinh

( √
〈 z,w〉C=
f2

)
√

〈 z,w〉C=
f2

, (24)

where 〈z,w〉C= = zw> =
∑=
8=1 I8F8 .

Proof. We will be needing the result of Theorem 1.4 to prove this result. In Theorem 1.4, we take
I asW as the index set, then we have following:

 f (z,w) =
∑
# ∈W

e# (z) e# (w)

=
∑
# ∈W

√
1

f2# (2# + 1)!
z#

√
1

f2# (2# + 1)!
w#

=

∞∑
#=0

1
(2# + 1)!

(
zw>

f2

)#

=

sinh
( √

zw>/f2

)
√(

zw>/f2
) .
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Obviously, the other notable and useful way of representing the reproducing kernel  f (z,w) is
by writing the argument in the scalar inner-product format of 〈z,w〉C= = zw> over C=. Hence,

 fw (z) =  f (z,w) =
sinh

(√
〈z,w〉C=
f2

)
√

〈z,w〉C=
f2

.

Hence, the result is now established. �

3.5. Weakly converging sequence in RKHS �f,1,C=
As now, we have eventually established the reproducing kernel for RKHS �f,1,C= we are now

in position to describe about the weakly converging sequence in RKHS�f,1,C= by the application
of Lemma 1.6.

Theorem 3.4. Let f > 0 and �f,1,C= be the RKHS as defined in (22) with reproducing kernel

 fw (z) =
sinh

(
〈z,w〉C=/f2 )1/2(

〈z,w〉C=/f2 )1/2 for z,w ∈ C=. Let {z" }" be the sequence of points in C= such that

‖ z" ‖2 → ∞ as " → ∞, then following holds true:

lim
‖ z" ‖2→∞

[
sinh ‖ z" ‖2/f

‖ z" ‖2/f

]− 1
2

 fz" = 0.

Proof. Suppose f > 0. Fix a z" ∈ C= for some " ∈ W. We will use (7) to determine ‖ z‖ as
follows:

‖ fz" ‖2 = 〈 fz" ,  
f
z" 〉 =  

f
z" (z" ) =

sinh
( √

〈 z" ,z" 〉C=/f2
)

√
〈 z" ,z" 〉C=/f2

=

sinh
( √

‖ z" ‖2
2/f2

)
√

‖ z" ‖2
2/f2

=
sinh ( ‖ z" ‖2/f)

‖ z" ‖2/f . (25)

Once we have determined the quantity ‖ fz ‖, which is ‖ fz ‖ =
(

sinh(‖ z" ‖2/f)
‖ z" ‖2/f

)1/2
, we can combine

this result with Lemma 1.6 in the light of " → ∞ and therefore the desired result is achieved;
demonstrated as follows:

0 = lim
‖ z" ‖2→∞

‖ fz" ‖−1 fz"︸                             ︷︷                             ︸
Lemma 1.6

From (25)︷                                                ︸︸                                                ︷
= lim

‖ z" ‖2→∞

(
sinh ( ‖ z" ‖2/f)

‖ z" ‖2/f

)− 1
2

 fz" = 0 .

Hence, the desired result is achieved. �
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3.6. Point-wise evaluation inequality
Now, that we have figured out the norm of the reproducing kernel  fz in (25) for the RKHS

�f,1,C= , we can provide the point-wise estimate for the holomorphic function 5 : C= → C
that lives in �f,1,C= in terms of ‖ 5 ‖ and ‖ fz ‖. This discussion is performed in the immediate
theorem.

Theorem 3.5. Let f > 0. For all z ∈ C= and consider 5 in the RKHS �f,1,C= , then following
point-wise evaluation inequality holds:

| 5 (z) | ≤ ‖ fz ‖‖ 5 ‖,

where  fz is the reproducing kernel for the RKHS �f,1,C= .

Proof. Since, it is provided that 5 ∈ �f,1,C= . This immediately imply that for any z ∈ C=, we
have following due to the virtue of reproducing property of the reproducing kernel  fz :

5 (z) RP in (7)
= 〈 5 ,  fz 〉

=⇒ | 5 (z) | ≤ |〈 5 ,  fz 〉|
C-B-S
≤ ‖ 5 ‖‖ fz ‖,

where C-B-S simply implies for the Cauchy-Bunyakowsky-Schwarz inequality (cf. (18, Chapter
1, Page 3)). �

3.7. Bounds for norm of reproducing kernel
As we have now gathered the structure of the reproducing kernel  fz for the RKHS �f,1,C= ,

we shall determine the bounds of the norm of  fz as well. In doing so, the result derived in (25)
can be used to establish an interesting results in terms of lower and upper bound of ‖ fz ‖ for the
reproducing kernel  fz of �f,1,C= . This is demonstrated as follows:

Lemma 3.6. Let f > 0. For all z ∈ C=, the norm of the reproducing kernel  fz of RKHS �f,1,C=
satisfies the following inequality:

exp
(
1
2

[
‖ z‖2
f

coth
‖ z‖2
f

− 1
] )
< (1) ‖ fz ‖2 < (2) exp

(
‖ z‖2

2
6f2

)
. (26)

Proof. We will employ the Weierstrass factorization theorem (cf. (95, Chapter 5)) for the function
sinh Z/Z followed by taking the ‘log’ as demonstrated follows:

sinh Z
Z

=

∞∏
9=1

(
1 + Z2

92c2

)
=⇒ log

sinh Z
Z

=

∞∑
9=1

log
(
1 + Z2

92c2

)
.

The respective proofs for both lower and upper bound inequality are given as follows. We begin
with the upper bound inequality:

Inequality (2)
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To establish Inequality (2), we define a function g2 : R+ ∪ {0} → R+ ∪ {0} by g2 (G) =

G − log(1+ G) for G ∈ R+ ∪ {0}. Then a simple calculation demonstrates that g2 (G) ≥ 0 whenever
G ∈ R+∪{0} and hence we can easily conclude now that g2

(
Z 2

92 c2

)
> 0 whenever 9 ≥ 1. Therefore

log
(
1 + Z 2

92 c2

)
<

Z 2

92 c2 . Hence, taking the summation of this over 9 ∈ Z+, we have

log
sinh Z
Z

=

∞∑
9=1

log
(
1 + Z2

92c2

)
<

∞∑
9=1

Z2

92c2 =
Z2

c2

∞∑
9=1

1
92

=
Z2

c2 · c
2

6
=
Z2

6
.

Taking the exponentiation of above yields sinh Z
Z

< exp
(
Z 2

6

)
and with Z ↦→ ‖ z‖C=/f, we have

finally:

‖ fz ‖2 =

sinh
(
‖ z‖2
f

)
(
‖ z‖2
f

) < exp

(
‖ z‖2

2
6f2

)
. (27)

The above inequality provides the upper bound for the norm of reproducing kernel  fz for the
RKHS �f,1,C= . Now, we provide the lower bound for the same as follows:

Inequality (1)

To establish Inequality (1), we define a function g1 : R+ ∪ {0} → R+ ∪ {0} by g1 (G) =

log(1 + G) − G
1+G for G ∈ R+ ∪ {0}. Then a simple calculation demonstrates that g1 (G) ≥ 0

whenever G ∈ R+ ∪ {0} and hence we can easily conclude now that g1

(
Z 2

92 c2

)
> 0 whenever

9 ≥ 1. Therefore, Z 2

92 c2+Z 2 < log
(
1 + Z 2

92 c2

)
. Hence, taking the summation of this over 9 ∈ Z+,

we have

log
sinh Z
Z

=

∞∑
9=1

log
(
1 + Z2

92c2

)
>

∞∑
9=1

Z2

92c2 + Z2

=
Z2

c2

∞∑
9=1

1

92 + Z 2

c2

=
Z2

c2


1
2


c
Z

c

coth
(
Z

c
c

)
− 1

Z 2

c2


 (use (95, Page 128, Probelm-6))

=
1
2
[Z coth Z − 1] .

Again, taking the exponentiation of above yields exp
(

1
2 [Z coth Z − 1]

)
<

sinh Z
Z

and with Z ↦→
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‖ z‖2/f, we have finally:

exp
(
1
2

[
‖ z‖2
f

coth
‖ z‖2
f

− 1
] )
<

sinh
‖ z‖2
f

‖ z‖2
f

= ‖ fz ‖2. (28)

Combining (27) and (28) produces the desired result. �

It is now an easy exercise to observe that by taking the square-root in (26), following can be
achieved,

exp
1
4

[
‖ z‖2
f

coth
‖ z‖2
f

− 1
]
< ‖ fz ‖ < exp

‖ z‖2
2

12f2 .

4. Koopman Operators on RKHS from the Laplacian measure

We have already given the definition of Koopman or composition operators in Definition 1.8
between the Hilbert space given by !2 (`) in the context of dynamical system under the additional
assumption of sampling-flow assumption. Traditionally, the study of the Koopman operators
over the Hilbert space has been at the center stage of core operator-theoretic analysis, where
mathematicians try to understand the function theoretic properties of the symbol of the Koopman
operator that may impact it and vice-versa (cf. (5; 6; 14; 21; 25; 91)).

With !2−measure as the usual Gaussian measure as 4−f | z |2 (2nd entry in Table 1), we get the
very-much-celebrated Bergman-Segal-Fock space F 2 (C=) (cf. (46; 107)), where the Koopman
operators Ki induced by a holomorphic function i : C= → C= have been completely charac-
terised by (12).

Their results are given as follows for Ki : F 2 (C=) → F 2 (C=):

Theorem 4.1 (Koopman operators over the Bergman-Segal-Fock space of holomorphic functions
(12)). Suppose i : C= → C= be a holomorphic mapping. Then

1. Ki is bounded on F 2 (C=) if and only if i(z) = �z + 1 where � is an = × = matrix with
‖�‖ ≤ 1 and 1 is = × 1 complex vector such that 〈�Z, 1〉 = 0 whenever |�Z | = |Z |.

2. Ki is compact on F 2 (C=) if and only if i(z) = �z + 1 where ‖�‖ < 1 and 1 is any =× 1
complex vector.

We take the motivation from Theorem 4.1 to address the concern of the operator-theoretic
characterisation for the Koopman operators over the newly-developed RKHS �f,1,C= out of the
normalized Laplacian measure.

4.1. Koopman operators over RKHS �f,1,C=
In this subsection, we recall that if i : C= → C= is a holomorphic function in which every

coordinate function of it are holomorphic fromC= → C, then the Koopman operator induced by i
is given as Ki which takes the mapping from the domain of itself in �f,1,C= to itself. Recall that

�f,1,C= is the RKHS whose reproducing kernel function is given as  fw (z) =
sinh

( √
〈z,w〉C=/f2

)√
〈z,w〉C=/f2

.

We provide the definition of the Koopman operators in the setting of the newly developed RKHS
�f,1,C= as follows.
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Definition 4.2. Let i : C= → C= be a holomorphic function in which every coordinate function
of it are holomorphic functions from C= → C. Then, the Koopman operator induced by i is
denoted by Ki : D

(
Ki

)
⊂ �f,1,C= → �f,1,C= and is the linear operator defined by

Ki ( 5 ) B 5 ◦ i

and the domain of Ki is D
(
Ki

)
is given as

D
(
Ki

)
B

{
5 ∈ �f,1,C= : 5 ◦ i ∈ �f,1,C=

}
.

As we learn that the Koopman operators are closed, then one can employ the closed graph
theorem to result into its boundedness and therefore we have the well-defined adjoint relationship.
In this case, the adjoint of the Koopman operator over the RKHS �f,1,C= is given in the following
lemma.

Lemma 4.3. Let i : C= → C= be the holomorphic mapping with every coordinate function as
holomorphic function from C= → C. Then, the Koopman operator Ki : D

(
Ki

)
→ �f,1,C=

induced by i satisfies the following adjoint relation with the reproducing kernel  fz of RKHS
�f,1,C= :

K∗
i 

f
z =  f

i ( z) .

Proof. Let 5 ∈ �f,1,C= and pick an arbitrary z ∈ C=, then

〈 5 ,K∗
i 

f
z 〉 = 〈Ki 5 ,  

f
z 〉 = Ki 5 (z) = 5 (i (z)) = 〈 5 ,  f

i ( z)〉.

Hence, the desired result is achieved. �

Lemma 4.3 makes us realize that the set of reproducing kernel
{
 fz : z ∈ C=

}
is invariant

under the adjoint of Ki (20, Chapter 1). Additionally the relation defined in the above lemma
provides the unique relationship of K∗

i 
f
z via the inner product of the RKHS �f,1,C= and hence

we can have the Koopman operator Ki as to be densely defined over the RKHS �f,1,C= (79,
Chapter 13, Page 348) and also the adjoint of the Koopman operator is now close in the RKHS
�f,1,C= (79, Theorem 13.9).

4.2. Boundedness of Koopman operators over RKHS �f,1,C=
We begin by providing a preparatory result that will be further used in upcoming proves.

Lemma 4.4. Let Ψ : C= → C be holomorphic on a complex domain containing the closed unit
ball. If Ψ(z) = ∑∞

| 9 |=0 0 9 I
9 , then

(2c)−=
∫ c

−c
· · ·

∫ c

−c
|Ψ(z) |23ϑ =

∑
| 9 |=0

|0 9 |2A2 9 , 0 9 ∈ C.
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Proof. Recall that (2c)−1
∫ c

−c 4
8 ( 9−: )o 3o = X 9 ,: . As Ψ(z) = ∑

| 9 |=0 0 9 z 9 , this implies that we
have following consequences:

|Ψ(z) |2 = Ψ(z)Ψ(z)

=
∑
| 9 |=0

∑
|: |=0

0 90:I
9 I:

=
∑
| 9 |=0

∑
|: |=0

0 90:A
9+:48 ( 9−: ) \

=
∑
| 9 |=0

∑
|: |=0

0 90:A
91+:1
1 · · · A 9=+:==

(
=∏
;=1

48 ( 9;−:; ) \;

)
.

So, ∫ c

−c
· · ·

∫ c

−c
|Ψ(z) |23ϑ

=
∑
| 9 |=0

∑
|: |=0

0 90:A
91+:1
1 · · · A 9=+:==

;−C8<4B︷         ︸︸         ︷∫ c

−c
· · ·

∫ c

−c

(
=∏
;=1

48 ( 9;−:; )o;3o;

)
=

∑
| 9 |=0

∑
|: |=0

0 90:A
91+:1
1 · · · A 9=+:== [(2c)=X 91:1 · · · X 9=:= ]

=(2c)=
∑
| 9 |=0

|0 9 |2A2 9 .

Therefore, multiplying by (2c)−= in the last equality furnishes the desired proof. �

Proposition 4.5 (Jensen’s convex inequality). Let (Ω, Σ, `) be a probability space, and 6 a real-
valued function that is `-integrable. If k is a convex function then,

k

(∫
Ω

6 3`

)
≤

∫
Ω

k ◦ 6 3`.

Proof. See (29, Lemma 6.1, Page 33). �

Lemma 4.6. Let Ξ : C= → C= be a holomorphic mapping with Ξ ≡ (b1, . . . , b=) ∈ C=, where
each {b}8=1,...,= are the coordinate functions of Ξ from C= → C which are holomorphic. As
‖Ξ (z) ‖2 be the Euclidean-norm in C= for some z ∈ C=, then following inequality is satisfied for
any U ≥ 1, (∫

AB=

‖Ξ (z) ‖2
23+ (z)

)U
≤

∫
AB=

‖Ξ (z) ‖2U
2 3+ (z),

where AB= = {z ∈ C= : ‖ z‖2 ≤ A} for some A > 0.

Proof. In order to prove the mentioned inequality in the above lemma, we will use the Jensen’s
convex inequality Proposition 4.5. Note that if we have a uni-variate function kU : R+ → R+
defined by kU (G) = GU for some U ≥ 1, then kU is a convex function (follow (9)). Now, as we see
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that ‖Ξ (z) ‖2
2 =

∑=
8=1 |b8 (z) |2 is a real-valued function which is integrable with respect to 3+ (z)

over the set AB=. Thus, we have

kU

(∫
AB=

‖Ξ (z) ‖2
23+ (z)

)
=

(∫
AB=

‖Ξ (z) ‖2
23+ (z)

)U
(29)

by the definition of kU. On the other hand,∫
AB=

kU ◦ ‖Ξ(z)‖2
23+ (z) =

∫
AB=

(
‖Ξ(z)‖2

2

)U
3+ (z) =

∫
AB=

‖Ξ(z)‖2U
2 3+ (z). (30)

Combining the result of (29), (30) together with the result of Proposition 4.5, we achieve the
desired result. �

Before we provide a key proposition for the action of the Koopman operators over the RKHS
�f,1,C= , we shall recall an interesting application of Cauchy’s inequalities or the maximum mod-
ulus principle, which usually is a standard complex analysis fact.

Proposition 4.7. If � is an entire function that satisfy sup |I |=' |� (I) | ≤ �': + � for all ' > 0
and for some integer : ≥ 0 and some constants �, � > 0, then � is a polynomial of degree ≤ : .

Proof. Follow (95, Chapter-3, Exercise-15(a), Page 105-106). �

We give a key proposition before we give the main theorem related to the boundedness of the
Koopman operators over the RKHS �f,1,C= .

Proposition 4.8. Let there be a positive finite " such that for a holomorphic function i : C= →
C=, in which every coordinate function of i is holomorphic from C= → C. Let z ∈ C=, and
suppose following holds:[

sinh ( ‖i ( z) ‖2/f)
‖i ( z) ‖2/f

] 1
2

·
[
sinh ( ‖ z‖2/f)

‖ z‖2/f

]− 1
2

< ",

where f > 0. If 0 < ‖i‖2 ≤ cf, then i admits an affine structure on C=, that is, i(z) = A z + �
where A ∈ C=×= with 0 < ‖A‖2 ≤ 1 and � is a complex vector in C=.

Proof. The validity of given inequality still holds even if we square it, therefore[
sinh ( ‖i ( z) ‖2/f)

‖i ( z) ‖2/f

]
·
[
sinh ( ‖ z‖2/f)

‖ z‖2/f

]−1
< "2.

Now, if we take the logarithm of above, we have following

log
[
sinh ( ‖i ( z) ‖2/f)

‖i ( z) ‖2/f

]
< log("2) + log

[
sinh ( ‖ z‖2/f)

‖ z‖2/f

]
.

We can now use the results of Lemma 3.6 in the above inequality to result into following obser-
vations:

1
2

[
‖i(z)‖2
f

coth
(
‖i(z)‖2
f

)
− 1

]
< log("2) +

‖ z‖2
2

6f2

‖i(z)‖2
f

coth
(
‖i(z)‖2
f

)
<2 log("2) + 1 +

‖ z‖2
2

3f2 . (31)
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Now, to further simplify the above inequality, we will simply employ the infinite series expansion
of an entire coth(•) which involves the presence of Bernoulli’s number

{
� 9

}
9∈W; defined as

coth G =
∑∞
9=0

22=�2=
(2=)! G

2=−1.

The above equation can be explicitly written as G coth G = 1 + 22�2
2! G

2 + ∑∞
9=2

22 9�2 9
(2 9 )! G

2 9 under
the additional assumption of 0 < |G | < c. Here, for 9 = 1, we have �2 = 1/6, so G ↦→ ‖i ( z) ‖2/f in
above yields:

‖i(z)‖2
f

coth
(
‖i(z)‖2
f

)
= 1 + 1

3

(
‖i(z)‖2
f

)2
+

∞∑
9=2

22=�2=
(2=)!

(
‖i(z)‖2
f

)2 9
. (32)

Using the result of (32) in (31) to have following:

1 + 1
3

(
‖i(z)‖2
f

)2
+

∞∑
9=2

22 9�2 9

(2 9)!

(
‖i(z)‖2
f

)2 9
<2 log("2) + 1 +

‖ z‖2
2

3f2

‖i(z)‖2
2 + (3f2)

∞∑
9=2

22 9�2 9

(2 9)!f2 9 ‖i(z)‖2 9
2 <2 log("2) + ‖ z‖2

2. (33)

Considering i ≡ (i1 (z), . . . , i= (z))> ∈ C=, where each {i8}8=1,...,= is a coordinate function of
i and is a holomorphic mapping from C= → C, then ‖i(z)‖2

2 =
∑=
8=1 |i8 (z) |2. Therefore, with

z = (I1, . . . , I=)> ∈ C= and ‖ z‖2
2 =

∑=
8=1 |I8 |2, we see that{

=∑
8=1

[
|i8 (z) |2 − |I8 |2

]}
+

(3f2)
∞∑
9=2

22 9�2 9

(2 9)!f2 9 ‖i(z)‖2 9
2

 < 2 log("2).

Integrating above with respect to ϑ on AB= to have{∫
AB=

=∑
8=1

[
|i8 (z) |2 − |I8 |2

] 3ϑ

(2c)=

}
+

(3f2)
∞∑
9=2

22 9�2 9

(2 9)!f2 9

∫
AB=

‖i(z)‖2 9
2

3ϑ

(2c)=
 < 2 log("2). (34)

As here, the infinite summation starts with 9 ≥ 2 > 1, therefore by the application of Lemma 4.6,
we can have following conclusion{∫

AB=

=∑
8=1

[
|i8 (z) |2 − |I8 |2

] 3ϑ

(2c)=

}
(♠)

+
(3f2)

∞∑
9=2

22 9�2 9

(2 9)!f2 9 (2c)= 9

(∫
AB=

‖i(z)‖2
23ϑ

) 9 (♣)

≤ LHS of (34)

<2 log("2).

Here we are using {•} (♠) and {•} (♣) to provide smooth understanding of respective manipulations
that are happening on respective quantities present inside the curly brackets. Therefore, the above
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inequality results into{∫
AB=

=∑
8=1

[
|i8 (z) |2 − |I8 |2

] 3ϑ

(2c)=

}
(♠)

+
(3f2)

∞∑
9=2

22 9�2 9

(2 9)!f2 9 (2c)= 9

(∫
AB=

‖i(z)‖2
23ϑ

) 9 (♣)

< 2 log("2).

The above inequality can be simplified into following (term by term) in terms of A along with the
help of multi-index notation:

∑
| 9 |=0

|0:9 |2A
2 91
1 · . . . · A2 9=

= −
=∑
ℓ=1

A2
ℓ

 (♠)

+
(3f2)

∞∑
9=2

22 9�2 9

(2 9)!f2 9 (2c)= 9
©«
∑
| 9 |=0

|0:9 |2A
2 91
1 · . . . · A2 9=

=
ª®¬
9 (♣)

< 2 log("2).

Note that, here we used a super-script of : to indicate this a decomposition of the :-th component
of the function i. Further, if we let 48 be the multi-index with a 1 in the 8-th spot and zeros else
where, then the above rearranges to:

†(A )︷                         ︸︸                         ︷∑
| 9 |=2

|0:9 |2A
2 91
1 · . . . · A2 9=

= +|0:0 |
2 +

=∑
ℓ=0

( |0:4ℓ |
2 − 1)A2

ℓ

 (♠)

+


(3f2)

∞∑
9=2

22 9�2 9

(2 9)!f2 9 (2c)= 9

©«
∑
| 9 |=0

|0:9 |2A
2 91
1 · . . . · A2 9=

=︸                         ︷︷                         ︸
‡(A )

ª®®®®®®®¬

9 (♣)

< 2 log("2).

This inequality is true for all A = (A1, . . . , A=)> ∈ R=+. We see that both quantities †(A) and ‡(A)
grow in the Big-O complexity rate, that is †(A) ∝ $ (A) & ‡(A) ∝ $ (A 9 ) as A → ∞. Therefore, by
the application of Cauchy’s estimate (or the maximum modulus principle as in Proposition 4.7)
in this inequality, we immediately conclude that |0:

9
| = 0 for 9 ≥ 2 in †(A). Similarly, we

also see that Cauchy’s estimate (or the maximum modulus principle as in Proposition 4.7) forces
to ‡(A) be 0 as well. Hence, with the relabelling of the coordinate function of i as i: (I) =

0:,1I1 + · · · + 0:,=I= + 1: . Thus, i(z) = A z + � where, A = [0:, 9 ]=,=:, 9=1 and � = (11, . . . , 1=)>.
Now, that we have observed that both †(A) and ‡(A) are 0 and i(z) = A z + �, we revisit (33)

32



to have

‖A z + �‖2
2 <2 log("2) + ‖ z‖2

2

‖A z + �‖2
2

‖ z‖2
2

<
2 log("2)

‖ z‖2
2

+ 1

=⇒ lim
‖ z‖→∞

‖A z + �‖2
2

‖ z‖2
2

<1.

Now, suppose that ‖AZ ‖2 > ‖Z ‖2 = 1 for some Z ∈ C= whose norm is 1. Setting z = CZ and
C > 0 in above yields following:

lim
C→∞

AZ + 1
C
�


2

‖Z ‖2
< 1,

which is a contradiction and therefore, ‖A‖2 ≤ 1. �

4.2.1. Boundedness of Koopman operators
Definition 4.9. Let f be a positive and finite real number. Let Ki be the Koopman operator
induced by holomorphic function i : C= → C= acting over the RKHS�f,1,C= whose reproducing
kernel is given as  fz at z ∈ C=. We define

Πz (i;f) B
‖K∗

i 
f
z ‖2

‖ fz ‖2 . (35)

Additionally, we also define the supremum of above over z ∈ C= as follows:

Π (i;f) B sup
z∈C=

Πz (i;f) = sup
z∈C=

‖K∗
i 

f
z ‖2

‖ fz ‖2 . (36)

Now, that we have defined two important quantities given in (35) and (36) which essentially
help characterizing the behaviour of the Koopman operators over the RKHS �f,1,C= in terms of
its reproducing kernel. We can now give an important inequality for the action of the Koopman
operators on the normalized reproducing kernel kfz B  fz /‖ fz ‖ satisfying ‖kfz ‖ = 1 at z ∈ C=
where f > 0. This result is captured in the following lemma.

Lemma 4.10. Let f > 0. Let i : C= → C= be a holomorphic function over C= in which
every coordinate functions of i are holomorphic from C= → C. Consider the Koopman operator
Ki : D

(
Ki

)
→ �f,1,C= induced by i. If for some z ∈ C=, kfz ∈ D

(
Ki

)
, then:√

Πz (i;f) ≤ ‖Ki kfz ‖.

Proof. The proof of the above result involves the application of point-evaluation inequality for
the RKHS �f,1,C= . Further details are given as follows:

‖Ki kfz ‖2‖ fz ‖2 ≥ |Ki kf
i ( z) (z) |2 = |kf

i ( z) (i(z)) |2.
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As |kf
i ( z) | = | fi ( z)/‖ fi ( z) ‖ |, so |kf

i ( z) (i(z)) | = | fi ( z) (i ( z) )/‖ f
i ( z) ‖ | = | ‖ fi ( z) ‖

2/‖ f
i ( z) ‖ | = ‖ f

i ( z) ‖.
From this result and above, we have

‖Ki kfz ‖2‖ fz ‖2 ≥ ‖ f
i ( z) ‖

2 = ‖K∗
i 

f
z ‖2.

Therefore, further dividing the above inequality by ‖ fz ‖2 ≠ 0 to have

‖Ki kfz ‖2 ≥
‖K∗

i 
f
z ‖2

‖ fz ‖2 = Πz (i;f) .

The desired result follows by taking the square-root of above. Hence proved. �

The following theorem provides the boundedness characterization for the Koopman operators
Ki induced by the holomorphic function i.

Theorem 4.11. Letf > 0 and i : C= → C= be a holomorphic function in which every coordinate
function of i is holomorphic from C= → C. Let Ki : D

(
Ki

)
→ �f,1,C= be the Koopman

operator induced by i over the RKHS �f,1,C= . Then, the Koopman operatorKi acts boundedly
over �f,1,C= if and only i admits the affine structure, that is i(z) = A z + � where ‖A‖2 ≤ 1
and Π (i;f) < ∞.

Proof. Let f > 0 and i be a holomorphic function on C= as given in the statement. Consider the
i−induced Koopman operator acting over the RKHS �f,1,C= as Ki : D

(
Ki

)
→ �f,1,C= .

=⇒ Suppose that the i-induced Koopman operator is bounded over RKHS �f,1,C= , which
means that there exists a finite positive " such that ‖Ki ‖2 < " . A general operator
theory argument allow us to have ‖K∗

i ‖2 = ‖Ki ‖2 (cf. (38)) and hence ‖K∗
i ‖2 < " < ∞.

Now, observe that

∞ > " > ‖K∗
i ‖2 = sup

z∈C=

‖K∗
i 

f
z ‖2

‖ fz ‖2 ≥
‖K∗

i 
f
z ‖2

‖ fz ‖2 .

The above inequality allow us to have ‖K∗
i 

f
z ‖2

‖ fz ‖2 < " . Thus, employing the result of (our
key proposition) Proposition 4.8, we have the affine structure of i, which is i(z) = A z+�
along with ‖A‖2 ≤ 1.

⇐= Now, suppose that we have the affine structure of i(z) = AI +�, where A ∈ C= ×C= with
‖A‖2 ≤ 1. Additionally, suppose that for this i, Π (i;f) < ∞ also holds.
Recall the normalized reproducing kernel kfz at some z ∈ C= which is given as kfz =
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 fz /‖ fz ‖. Then,

‖K∗
i ‖2 = sup

z∈C=

{
sup

‖ kfz ‖=1

‖K∗
i kfz ‖2

‖kz‖2

}

= sup
z∈C=


sup

‖ kfz ‖=1

K∗
i

 fz

‖ fz ‖

2

  fz fz 
2


= sup

z∈C=

{
sup

‖ kfz ‖=1

[
‖ fz ‖−2

‖ fz ‖−2 ·
‖K∗

i 
f
z ‖2

‖ fz ‖2

]}
= sup

z∈C=

‖K∗
i 

f
z ‖2

‖ fz ‖2

=Π (i;f)
<∞.

The above chain of inequalities implies that ‖K∗
i ‖ is bounded.

Hence, combining the arguments of the above two points delivers the desired result. �

After that we have derived the boundedness characterization of the Koopman operator over
the RKHS �f,1,C= , we would like to close this subsection by providing an important yet an easy-
exercise corollary.

Corollary 4.12. Letf > 0. Let i : C= → C= be a holomorphic function in which each coordinate
function of i is holomorphic from C= → C. Let Ki : D

(
Ki

)
→ �f,1,C= be the Koopman

operator induced by i over the RKHS �f,1,C= . If the Koopman operatorKi acts boundedly over
the RKHS �f,1,C= then i(z) = A z + � with 0 < ‖A‖2 ≤ 1 and

sup
z∈C=

{
exp

[
1
2

(
‖A z + �‖2

f
coth

‖A z + �‖2
f

− 1
)
−

‖ z‖2
2

6f2

]}
< � < ∞.

Proof. The proof of this corollary involves the application of both lower and upper bounds of
the reproducing kernel  fz of RKHS �f,1,C= that we derived in Lemma 3.6 combining together
with the consequence of Theorem 4.11. As the Koopman operator Ki : D

(
Ki

)
→ �f,1,C= is

acting boundedly, therefore i(z) = A z + � where A ∈ C=×= and ‖A‖2 ≤ 1. Additionally, we
also see that the quantity Π (i;f) is finite where the structure of i is already determined. With
this information in our hand, we proceed as follows:

∞ > Π (i;f) = sup
z∈C=

Πz (i;f)

≥Πz (i;f)
=‖K∗

i 
f
z ‖2 · ‖ fz ‖−2

=‖ f
i ( z) ‖

2 · ‖ fz ‖−2. (37)
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Since by the conclusion of Lemma 3.6, we have following:

‖ fz ‖2 < (2) exp

(
‖ z‖2

2
6f2

)
=⇒ ‖ fz ‖−2 > exp

(
−
‖ z‖2

2
6f2

)
. (38)

Also, if we revisit Lemma 3.6, we see that

‖ fz ‖2 > (1) exp
(
1
2

[
‖ z‖2
f

coth
‖ z‖2
f

− 1
] )

=⇒ ‖ f
i ( z) ‖

2 > exp
(
1
2

[
‖i(z)‖2
f

coth
‖i(z)‖2
f

− 1
] )
. (39)

Therefore, combining (39), (38) and (37), we have

Πz (i;f) ≥ exp
(
1
2

[
‖i(z)‖2
f

coth
‖i(z)‖2
f

− 1
] )

· exp

(
−
‖ z‖2

2
6f2

)
.

To this end, now we take the supremum over z ∈ C= of above to have

sup
z∈C=

exp

(
1
2

[
‖i(z)‖2
f

coth
‖i(z)‖2
f

− 1 −
‖ z‖2

2
6f2

])
≤ sup

z∈C=
Πz (i;f) = Π (i;f) .

As for affine i(z) = A z + �, the quantity Π (i;f) is already finite due to the Koopman operator
being bounded over the RKHS �f,1,C= , hence the result prevails. �

4.2.2. Some words on the Affine structure of i
If A is an invertible = × = complex-valued matrix, then i = A z + � is an injective entire

self-mapping on C=. For the remainder of the paper, i will be an affine self-map on C=; that is
to say that i(I) = AI + � is an injective self-mapping entire function on C= and A is invertible.
This convention follows that found in (12; 37; 104), and (36) for the affine structure of i.

If i : C= → C= admits an affine structure with an additional condition that 0 . A ∈ C=×=
and also is invertible (that is det (A) ≠ 0), then one can define s (u) = A−1u − A−1� as the
inverse map of i. In this case, if we define

♮(s(u)) = Πs (u) (i;f) =⇒ ♮(i) = ΠI (i;f) . (40)

Therefore,

♮ (i) ≤ Π (i;f) . (41)

Following are the vector field in two dimension for both an affine dynamical system and non-affine
dynamical system.
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−5 0 5

−5

0

5

ẋ(t) = 1 + 0.9x(t)

2 4 6

−5 0 5

−5

0

5

ẋ(t) = 1 + x2(t)

10 20 30 40

Figure 5: Vector field: Affine dynamic (L) & Non-affine dynamic (R).

4.3. Essential norm estimates of Koopman operators over RKHS �f,1,C=
Following is the basic definition for the essential norm of a bounded linear operator acting

between the Banach space.

Definition 4.13. For two Banach spacesX1 andX2 we denote by  (X1,X2) the set of all compact
operators from X1 into X2. The essential norm of a bounded linear operator A : X1 → X2,
denoted as ‖A‖e is defined as

‖A‖e B inf {‖A − ) ‖ : ) ∈  (X1,X2)} . (42)

Recall that a holomorphic function 5 : C= → C exhibiting 5 (z) =
∑
< 0< z< for z ∈ C=

where the summation is over all multi-indexes < = (<1, · · · , <=) where each {<8} are positive
integer and z = I<1

1 · · · I<== . Follow (106) for more details on this.
By letting %: (z) = ∑

|< |=: 0< z< for each : ≥ 0 where |< | = ∑=
8=1 <8 , then the Taylor series

of 5 can be re-written as

5 (z) =
∞∑
:=0

%: (z). (43)

The result in (43) is called as the homogeneous polynomial expansion of holomorphic function 5
having the degree of : which is uniquely determined by 5 . Now, for each < ∈ Z+, we define the
operator P< on holomorphic function 5 as follows:

P< 5 (z) =
∞∑
:=<

%: (z) .

If we consider the action of the operator P< defined above on the reproducing kernel  fw of the
RKHS �f,1,C= from (24) in Theorem 3.3, then we get the following result:

P< fw (z) = P<
©«

sinh
( √

〈 z,w〉C=
f2

)
√

〈 z,w〉C=
f2

ª®®®®¬
= P<

( ∞∑
#=0

〈z,w〉C=
(2# + 1)!

)
=

∞∑
#=<

〈z,w〉C=
(2# + 1)! .
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Proposition 4.14. Let f > 0 and  fz be the reproducing kernel at z ∈ C= of the RKHS �f,1,C= .
Then,

|P< 5 (z) | ≤ ‖ 5 ‖

√√ ∞∑
#=<

‖ z‖2#
2

(2# + 1)! , (44)

for all 5 ∈ �f,1,C= .

Proof. Let f > 0. We proceed by considering 5 ∈ �f,1,C= and then employing the reproducing
property of the reproducing kernel  fz at z ∈ C=, then P< 5 (z) = 〈P< 5 ,  fz 〉. Then,

|P< 5 (z) |2 = |〈P< 5 ,  fz 〉|2 = |〈 5 ,P∗
< 

f
z 〉|2 = |〈 5 ,P< fz 〉|2, (45)

where last two step uses the property of P< being self-adjoint and idempotent. Now,

|〈 5 ,P< fz 〉|2 ≤ ‖ 5 ‖2‖P< fz ‖2 = ‖ 5 ‖2〈P< fz ,P< fz 〉 =〈P∗
<P< fz ,  fz 〉

=〈P< fz ,  fz 〉
=P< fz (z)

=

∞∑
#=<

‖ z‖2#
2

(2# + 1)! . (46)

Thus, combining (45) and (46) followed by taking the square-root and hence the result is proved.
�

Following details in regards of Hilbert spaces in the light of RKHS �f,1,C= , are respectfully
borrowed from (69) or (70, Chapter VI).

Proposition 4.15. A linear and bounded operator B is compact over the RKHS �f,1,C= if and
only if lim"→∞ ‖Bℎ" −Bℎ‖ = 0 provided that ℎ" → ℎ weakly in RKHS �f,1,C= .

We use the following criteria for the weakly convergence sequence in the RKHS �f,1,C= and
as a general approach can be learnt from standard references such as (37), (56) and (57).

Proposition 4.16. The sequence {ℎ" }" in the RKHS �f,1,C= posses the weakly convergence to
0 in �f,1,C= if and only if following conditions are true:

1. bounded in the norm topology of the RKHS �f,1,C=

2. uniformly convergent to 0 over the compact subsets of the RKHS �f,1,C= .

Proposition 4.16 can be used to express the following corollary.

Corollary 4.17. Let f > 0 and i(z) = A z + � where A . 0 ∈ C=×= and ‖A‖2 ≤ 1. Consider
a sequence of points {z" }" ∈ C= such that ‖ z" ‖2 → ∞ as " → ∞. Then, the sequence
of normalized reproducing kernels

{
kf
i ( z" )

}
"

of �f,1,C= evaluated at {i (z" )}" converges
weakly to 0 over the RKHS �f,1,C= .
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Lemma 4.18. Let f > 0. Consider i : C= → C= as a holomorphic mapping in which every
coordinate function of i are holomorphic from C= → C. Let Ki : D

(
Ki

)
→ �f,1,C= be the

Koopman operator induced by i on the RKHS �f,1,C= . If the Koopman operatorKi is bounded
over the RKHS �f,1,C= then the essential norm of Ki denoted by ‖Ki ‖ess satisfies following

‖Ki ‖ess ≤ lim inf
"→∞

‖KiP" ‖,

where i(z) = A z + � with ‖A‖2 ≤ 1
Proof. As the Koopman operator Ki : D

(
Ki

)
→ �f,1,C= induced by i, is bounded, thus the

result of Proposition 4.8 holds and therefore i(z) = A z + � with ‖A‖2 ≤ 1. Let ℭ be a compact
operator over the RKHS�f,1,C= . Then, observe following chain of inequalities for some" ∈ Z+:

‖Ki − ℭ‖ =‖Ki (P" + %" ) − ℭ‖
≤‖KiP" ‖ + ‖Ki%" − ℭ‖. (47)

Since %" is finite rank and hence compact. Therefore ‖Ki%" − ℭ‖ = 0 in the light of fact that
ℭ is also compact over the RKHS �f,1C= . Therefore, taking the lim inf as " → ∞, we have

‖Ki ‖ess
via (42)
B lim inf

"→∞
‖Ki − ℭ‖

via (47)
≤ lim inf

"→∞
‖KiP" ‖.

Hence proved! �

Now, the following theorem provides the essential norm estimates for the bounded Koopman
operators over the RKHS �f,1,C= .
Theorem 4.19. Letf > 0. Let i : C= → C= be a holomorphic function in which each coordinate
functions of i are holomorphic from C= → C. If the induced Koopman operator by i, Ki :
D

(
Ki

)
→ �f,1,C= is bounded, then the essential norm of Ki satisfies following estimates

inequality:

lim
‖ z‖2→∞

√
Πz (i;f) ≤(1) ‖Ki ‖ess ≤(2)

(���det
(
A−1

)���)=/2
lim

‖ z‖2→∞

√
Πz (i;f)

where i (z) = A z + � with invertible A, 0 . A ∈ C=×= and ‖A‖2 < 1.
Proof. Given that Ki acts boundedly over the RKHS �f,1,C= , thus i is of the affine structure,
that is i(z) = A z + �, where ‖A‖2 ≤ 1. Now, with this i, we begin now the proof for the
Inequality (1) as follows. Let ℭ be a compact operator over the RKHS �f,1,C= , then the
following chain of inequalities holds true:

‖Ki − ℭ‖ ≥ lim sup
"→∞

‖
(
Ki − ℭ

)
kf
i ( z" ) ‖

≥ lim sup
"→∞

[
‖Ki kf

i ( z" ) ‖ − ‖ℭkf
i ( z" ) ‖

]
. (48)

As the sequence of normalized reproducing kernels
{

kf
i ( z" )

}
"

converges weakly to 0 over the
RKHS �f,1,C= , therefore ‖ℭkf

i ( z" ) ‖ → 0 as " → ∞. Thus,

via Lemma 4.10︷                         ︸︸                         ︷
lim sup
"→∞

√
Πz" (i;f) ≤ lim sup

"→∞
‖Ki kf

i ( z" ) ‖ ≤︸                        ︷︷                        ︸
via (48)

‖Ki − ℭ‖.
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Therefore, we have now successfully established the lower bound for the essential norm of the
Koopman operator over the RKHS �f,1,C= . Now, we will work on the upper bound of the same
and to that end, we fix some positive A and " ∈ Z+. Then, pick an arbitrary 5 ∈ �f,1,C= and
proceed as follows:

‖KiP" 5 ‖2 =

∫
C=

|KiP" 5 (z) |23`f,1,C= (z).

Note that i admits an affine structure with i(z) = A z + � where 0 . A ∈ C=×=. Therefore, we
can recall (40) and (41) to have following conclusion:

‖KiP" 5 ‖2

=
1

(2cf2)=

∫
C=
♮ (s (u)) |P" 5 (u) |2 exp

(
− ‖u‖2

f

) {���det
(
A−1

)���=} 3+ (u)

=

{��det
(
A−1) ��=}

(2cf2)=

∫
C=
♮ (s (u)) |P" 5 (u) |2 exp

(
− ‖u‖2

f

)
3+ (u)

=

[ ��det
(
A−1) ��

2cf2

]= ∫
C=
♮ (s (u)) |P" 5 (u) |2

(
χAB= ⊕ χC=\AB=

)
exp

(
− ‖u‖2

f

)
3+ (u) ,

where χ� is the indicator function for the sub-space � ⊂ C=. Due to the general theory from the
linearity of integral, we have now two parts of integral which will be treated simultaneously as
follows:

‖KiP" 5 ‖2 =

[ ��det
(
A−1) ��

2cf2

]=
·
∫
C=
♮ (s (u)) |P" 5 (u) |2χAB= exp

(
− ‖u‖2

f

)
3+ (u)

+
∫
C=
♮ (s (u)) |P" 5 (u) |2χC=\AB= exp

(
− ‖u‖2

f

)
3+ (u) . (49)

Then,

I {" }
AB=

=

[ ��det
(
A−1) ��

2cf2

]= ∫
C=
♮ (s (u)) |P" 5 (u) |2χAB= exp

(
− ‖u‖2

f

)
3+ (u)

=

[ ��det
(
A−1) ��

2cf2

]= ∫
C=∩AB=

♮ (s (u)) |P" 5 (u) |2 exp
(
− ‖u‖2

f

)
3+ (u)

=

[ ��det
(
A−1) ��

2cf2

]= ∫
AB=

♮ (s (u)) |P" 5 (u) |2 exp
(
− ‖u‖2

f

)
3+ (u)

≤
[ ��det

(
A−1) ��

2cf2

]=
Π (i;f) ‖ 5 ‖2

( ∞∑
#="

A2#

(2# + 1)!

) ∫
AB=

exp
(
− ‖u‖2

f

)
3+ (u) ,

where in the last step above we used inequality from (41) and (44). Now, as we allow " → ∞,
the quantity

∑∞
#="

A2#

(2#+1)! → 0 and hence

lim
"→∞

I {" }
AB=

= 0.
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After that we have optimized the limit over AB=, we now revisit (49) to optimize the limit for the
second part, that is over the compliment of AB= as follows:

I(AB= ){

=

[ ��det
(
A−1) ��

2cf2

]= ∫
C=
♮ (s (u)) |P" 5 (u) |2χC=\AB= exp

(
− ‖u‖2

f

)
3+ (u)

=

[ ��det
(
A−1) ��

2cf2

]= ∫
(AB= ){

♮ (s (u)) |P" 5 (u) |2 exp
(
− ‖u‖2

f

)
3+ (u)

≤
[ ��det

(
A−1) ��

2cf2

]= ∫
(AB= ){

{
sup

‖u‖2≥A
♮ (s (u))

}
|P" 5 (u) |2 exp

(
− ‖u‖2

f

)
3+ (u)

=

[ ��det
(
A−1) ��

2cf2

]= {
sup

‖u‖2≥A
♮ (s (u))

} ∫
(AB){

|P" 5 (u) |2 exp
(
− ‖u‖2

f

)
3+ (u)

=

(���det
(
A−1

)���)= {
sup

‖u‖2≥A
♮ (s (u))

}
‖P" 5 ‖2

≤
(���det

(
A−1

)���)= {
sup

‖u‖2≥A
♮ (s (u))

}
‖ 5 ‖2. (50)

Letting A → ∞ and combining the result of (50) and result from Lemma 4.18, we eventually have
following

‖Ki ‖ess ≤
√(��det

(
A−1) ��)=‖ 5 ‖ lim

A→∞

√√√{
sup

‖u‖2≥A
♮ (s (u))

}
=

(���det
(
A−1

)���)=/2
‖ 5 ‖ lim

A→∞
sup

‖u‖2≥A

{ √
♮ (s (u))

}
.

Thus, the result prevails. �

4.4. Compactness of Koopman operators over RKHS �f,1,C=
In the previous subsection, we provided the essential norm estimates for the Koopman op-

erators over the RKHS �f,1,C= . Now, we will provide the compactness characterization of the
Koopman operator over the same to extract the finite rank representation. Thus, the compactifi-
cation criteria is given as follows:

Theorem 4.20. Let f > 0 and i : C= → C= be a holomorphic mapping from C= → C= where
every coordinate functions of i are holomorphic function from C= → C. Let Ki : D

(
Ki

)
→

�f,1,C= be the Koopman operator induced by i over the RKHS �f,1,C= . If Ki is bounded over
the RKHS �f,1,C= , then the compactification of the Koopman operator over RKHS �f,1,C= is
possible if and only if lim‖ z‖2→∞ Πz (i;f) = 0, where i(z) = A z + � with 0 . A ∈ C=×= and
A is also invertible.
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5. Experimental Results for Fluid flow across cylinder

To demonstrate the ability of executing the Kernelized eDMD by the advantage of the com-
pactification of the Koopman operator over the RKHS �f,1,C= which is generated by the !2−em-
bedding into the normalized Laplacian measure, fluid flow around cylinder, which is the standard
experiment, is considered. The data is generated from the snapshots of the numerical simulation
of the in-compressible Navier-Stokes equation (10, Page 286):

m

mC
u(G, H, C) + u(G, H, C) · ∇u(G, H, C) + ∇?(G, H, C) − 1

Re
∇2u(G, H, C) = 0,

where u(G, H, C) represents the 2� velocity and ?(G, H, C) is the (corresponding) pressure field,
along with the incompressibility constraints∇·u = 0. The boundary conditions governs a constant
flow given as u = (1, 0)> at G = −15 (the entry of the domain), constant pressure of ? = 0 at
G = 25 (the end of the domain) and mu/mn = 0, on the boundary of the domain.

5.1. Construction of Koopman Modes via Laplacian and GRBF Kernel Functions
In this subsection, we will provide the dominant Koopman modes (both real and imaginary

values) for fluid flow across cylinder experiment for whose all the experimental details were al-
ready provided in the introduction of this section. Here, will will consider both of the kernel
functions for the construction of the Koopman modes. Before, we give the results, recall the
mathematical structure of the class of exponential power kernels given in (3); from here, we get
the Laplacian Kernel Function and the Gaussian RBF Kernel.

Note 5.1. In the upcoming sections, the result for the Koopman modes will be recorded which
are dominant for fluid flow across cylinder experiment. The experimental images mentions ex-
plicitly via GRBF Kernel if we performed the experiment by exploiting Gaussian RBF Kernel,
otherwise we employed the Laplacian Kernel Function. We also write LDA to mean Limited Data
Acquisition and FDA to mean Full Data Acquisition in the caption of figures.

5.1.1. Real dominant Koopman modes
To provide the figurative details for the Koopman modes of fluid flow across cylinder exper-

iment, we will consider the various numbers of snapshots that are available as a known part and
remaining gets padded by the Gaussian random matrix of suitable matrix dimension. To this end,
we will consider the situations when only 3, 7, 20, 55 and 151 snapshots were available to con-
struct the desired Koopman modes for the experiment. It should be noted that 151 are the actual
or the total number of snapshots assembled for this experiment. Now, we present the images for
the real part of the dominant Koopman modes when the aforementioned snapshots were provided
while the experiment was conducted.
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Figure 6: Dominant Koopman Modes with only 03−snapshots [LDA]
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Figure 7: Dominant Koopman Modes with only 07−snapshots [LDA]
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Figure 8: Dominant Koopman Modes with only 20−snapshots [LDA]
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Figure 9: Dominant Koopman Modes when only 55−snapshots [LDA]
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Figure 10: Dominant Koopman Modes with all 151−snapshots [FDA]

5.1.2. Imaginary dominant Koopman modes
In the continuation, now, we will provide the imaginary part of the corresponding dominant

Koopman modes.
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Figure 11: Dominant Koopman Modes with only 03−snapshots [LDA]
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Figure 12: Dominant Koopman Modes with only 07−snapshots [LDA]
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Figure 13: Dominant Koopman Modes with only 20−snapshots [LDA]
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Figure 14: Dominant Koopman Modes with only 55−snapshots [LDA]
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Figure 15: Dominant Koopman Modes with all 151−snapshots [FDA]

5.2. Executive conclusion
We presented both real and imaginary part of the dominant Koopman modes for fluid flow

across cylinder experiment when limited number data snapshots were provided in the previous
subsection. Following is a concise summary for the executive conclusion that we draw when
we compare the results of both real and imaginary dominant Koopman modes, that we get via
employing respective both of the kernel functions.

5.2.1. Dominant Koopman modes constructed via Laplacian & GRBF
Of what follows, the dominant Koopman modes generated when we allowed the interac-

tion of the Koopman operators on the Laplacian Kernel Function even when the as low as only
3-snapshots were available, we can successfully observe that in Figure 6 that in the result, we can
clearly visualize the cylinder as well as the flow of the fluid as well. However, the same setup
but with Gaussian RBF Kernel unfortunately fails to deliver the result which in fact also includes
noise as well. Now, upon increasing the snapshots from 3-snapshots to 7-snapshots, we fail to see
that the Gaussian RBF Kernel recovers the information in the form of Koopman modes. However,
the respective dominant modes via the Laplacian Kernel Function is now achieving more maturity
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as it now can distinguishly highlights detailed eddies of fluid flow across cylinder. We do see the
same result and conclusion when we move from 7- to 20-snapshots of this experiment. However,
in the case when we avail 55-snapshots for the experiment study, we are successfully able to point
out details that are provided by Gaussian RBF Kernel however, in the same situation, as one can
observe that the results via the Laplacian Kernel Function has more depth and nuance in terms
of providing vorticity profile for fluid flow across cylinder. Lastly, when all 151-snapshots are
given, we see now, that Gaussian RBF Kernel can perfectly construct the Koopman modes. Ad-
ditionally, it should also be noted here that the wiggly nature of fluid passing by cylinder appears
quite at the early stage when we use the Laplacian Kernel Function.

5.2.2. Gram-Matrix for data-set snapshots
After that we have analysed the Koopman modes generated by the Algorithm 2.18, now we

will provide the matrix structure with suitable color gradient scheme which on-the-spot informs
on how many actual snapshots were provided to execute the aforementioned algorithm.

Figure 16: Various Gram-Matrix produced while executing Laplacian Kernel based eDMD given in Algorithm 2.18
coupled with Gaussian random matrix.

Comment 5.2. In the above experiment of fluid flow across cylinder, as we know that we have
151−data-set snapshot and since, it is practically impossible to present the result for each of the
situations of limited data acquisition, we present these results into the scenario of considering
3, 7, 20, 55 and 151 as the actual snapshots by padding the remaining of the snapshots by
the Gaussian random matrix. These numbers are actually five equal part divisions⁶ of natural
logarithm of total actual number of snapshots i.e. 151 and rounded to next positive integer, for
fluid flow across cylinder experiment. Additionally, it should be noted if extra-conditioning is
needed to remove the noise from these constructed Koopmanmodes, one can augment the data-set
snapshot matrix with the pseudo-inverse of Gaussian random matrix. Because of the dimensions

⁶ln 151/5 = 1.00345597. Thus five parts are: 41×1.00345597 ≈ 2.7272 ' 3, 42×1.00345597 ≈ 7.44 ' 7, 43×1.00345597 ≈
20.2948 ' 20, 44×1.00345597 ≈ 55.3581 ' 55, and lastly 45×1.00345597 ≈ 151.0000 ' 151.
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of the Gaussian random matrix that will be required to be augment the data-set snapshots matrix,
the probability density function will remain unaltered during the pseudo-inversion process as well
(24), with the same kind of observation in (19) for the Wishart random matrix.

6. Why RKHS generated by the Laplacian measure is novel?

From the previous section where we provide the empirical evidence where Laplacian Ker-
nel easily outperforms the construction of the Koopman modes for fluid flow across cylinder
experiment against the Gaussian RBF Kernel under the scope of limited data acquisition. This
immediately warns us about the choice of using the reproducing kernel along with its RKHS into
our data-science practices. Therefore, in the present section we will discuss the distinguishing
property of the corresponding RKHS �f,1,C= of the normalized Laplacian measure which even-
tually makes it novel and unique. For this, we review first the definition of the closable operator
over general Hilbert space.

6.1. Review of Closable operator in Hilbert space
We recall when we mean an operator ) in a Hilbert space ℌ to be closable or preclosed as

given in standard functional analysis references such as (79, Chapter 13), (18, Chapter X, Page
304) (64, Chapter 5, Page 193), or (69, Chapter VIII, Page 250). We define that particular notion
systematically as follows:

Definition 6.1 (Graph of an operator). For an (unbounded) operator ) in Hilbert space ℌ with
its domain D()), we define the graph of ) in ℌ as follows:

�()) B {(G, )G) : G ∈ D())} . (51)

Definition 6.2 (Extension of an operator in Hilbert space). Let )� and ) be operators over the
Hilbert space ℌ. Let �()�) and �()) be the respective graphs of )� and ) as defined in (51). If
�()) ⊂ �()�), then )� is said to be an extension of ) and we write ) ⊂ )� and equivalently if
) ⊂ )� if and only if D()) ⊂ D()�) and )�Λ = )Λ for all Λ ∈ D()).

Definition 6.3 (Closable operator in Hilbert space). An operator is closable if it has a closed
extension.

As now we have given all the essential details regarding the notion of an unbounded operator
to be closable over the Hilbert space, we now provide an easy characterization for the operator to
be closable over the underlying Hilbert space which can be an easy functional analysis exercise.

Lemma 6.4. The operator ) in Hilbert space ℌ is closable if and only if for each sequence
{G=}= ∈ D()) converging to 0, the only accumulation point of {)G=}= is 0.

The above lemma (cf. (64, Chapter 5, Page 193)) can be interpreted as follows: for a linear
operator ) : D()) → ℌ is closable if and only if for any sequence G= such that G= → 0 when
= → ∞ and )G= → H=, then H= = 0. Lemma 6.4 will be used to demonstrate that bounded
Koopman operators Ki which will be induced by holomorphic function i : C= → C= is closable
on the RKHS �f,1,C= by constructing such a sequence of function whose behaviour follows
the required condition presented in Lemma 6.4. However, the same cannot performed for the
Gaussian RBF Kernel.
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6.2. Closability of Koopman operator over the RKHS of Laplacian measure
We will now demonstrate how the bounded Koopman operator is closable over the RKHS

�f,1,C= with the help of its reproducing kernel function  f (·, ·). To this end, we shall keep
f > 0 and consider the following operator ℑ− defined over C= as:

ℑ− z = −�= z, (52)

where �= is the identity matrix over C=. The operator define above is an injective linear operator
and hence the null-space is explicitly the zero vector in C=. Now, we define the graph of the
operator ℑ− as follows:

−ℨ+ (ℑ−) B {(z,ℑ− z) ∈ C= × C= : z ∈ C=} ,− ℨ+. (53)

Therefore, by the definition of the graph of ℑ− , essentially it is a coordinate system presented in
the format of {(z,−z) ∈ C= × C= : z ∈ C=}. It is worth-while to mention that the graph of ℑ−
defined in (53) is a closed subspace of C= × C=.

Interestingly, the formulation of the reproducing kernel function  f (·, ·) from (24) over the
set of coordinates present on −ℨ+ as defined in (53), we have following:

 f (−ℨ+) =
sinh

( √
〈 z,−z〉C=
f2

)
√

〈 z,−z〉C=
f2

=

sinh
( √

− 〈 z,z〉C=
f2

)
√
− 〈 z,z〉C=

f2

=

sinh
( √

− ‖ z‖2
2

f2

)
√
− ‖ z‖2

2
f2

=

sinh
(
8
‖ z‖2
f

)
8
‖ z‖2
f

=

sin
(
‖ z‖2
f

)
‖ z‖2
f

.

Now for the upcoming investigation, we will focus on the quantity ‖ z‖2 
f (−ℨ+). It is very im-

portant to show that quantity ‖ z‖2 
f (−ℨ+), which eventually is f sin

(
‖ z‖2
f

)
exist in the RKHS

�f,1,C= and therefore its norm is finite. In other words, we need to check whether the function
f sin

(
‖ z‖2
f

)
is !2−integrable with respect to the normalized Laplacian measure 3`f,1,C= (z), and

to that end, we have∫
C=

����f sin
(
‖ z‖2
f

)����2 3`f,1,C= (z) ≤ f2
∫
C=
3`f,1,C= = f2 < ∞,

as the Laplacian measure in 3`f,1,C= is already given in normalized form. Since, we already have
f < ∞, therefore, the function defined by ‖ z‖2 

f (−ℨ+) exists in the RKHS �f,1,C= and their
norm is bounded by f. After this, we define a sequence of points on the subspace −ℨ+,# of −ℨ+
as:

−ℨ+,# B

{
(z# ,−z# ) ∈ C= × C= : lim

#→∞
‖ z# ‖2 = 0 where z ∈ C=

}
. (54)
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Apparently, it is easy to see that −ℨ+,# ⊂ −ℨ+ because −ℨ+,# contains those sequence of coor-
dinates points from −ℨ+ whose magnitude gets negligibly small as # tends to ∞. Observe that
for coordinate points in −ℨ+,# , following relation holds:

‖ z# ‖2 
f (−ℨ+,# ) =f sin

(
‖ z# ‖2
f

)
,

=⇒ lim
#→∞

‖ z# ‖2 
f (−ℨ+,# ) = lim

#→∞

{
f sin

(
‖ z# ‖2
f

)}
lim
#→∞

‖ z# ‖2 
f (−ℨ+,# ) =f

{
lim
#→∞

sin
(
‖ z# ‖2
f

)}
lim
#→∞

‖ z# ‖2 
f (−ℨ+,# ) =f · 0

lim
#→∞

‖ z# ‖2 
f (−ℨ+,# ) =0. (55)

Thus, the above manipulation makes us learn that we do have indeed a sequence of functions
in terms of the reproducing kernel  f (·, ·) which approaches to 0 as # tends to infinity. If we
denote this sequence by K# that is, K# B ‖ z# ‖2 

f (−ℨ+,# ), then we have clearly

lim
#→∞

K# = lim
#→∞

‖ z# ‖2 
f (−ℨ+,# ) = 0. (56)

Let i : C= → C= be a holomorphic function in which every coordinate function of i is
holomorphic from C= → C. Considering the bounded Koopman operator Ki induced by this
i and hence, we see that i takes the affine structure as i(z) = A z + � by Theorem 4.11 where
A ∈ C=×= with 0 < ‖A‖ ≤ 1 and � is a =−dimensional complex vector. Suppose � ≡ 0 in
the aforementioned affine structure of i and hence we have i(z) ≡ A z which is a pure linear
structure over C=. Let this linear structure is denoted by iA (z) B A z, then the corresponding
Koopman operator KiA acting on sequence of function K# yields:

KiAK# =f sin
(
‖A z# ‖2

f

)
=⇒ lim

#→∞
KiAK# = lim

#→∞
f sin

(
‖A z# ‖2

f

)
lim
#→∞

KiAK# =f

{
lim
#→∞

sin
(
‖A z# ‖2

f

)}
lim
#→∞

KiAK# =f · 0

lim
#→∞

KiAK# =0. (57)

Note that if � . 0 in our preceding assumption then we fail to achieve this convergence. So, in
conclusion, we have determined a sequence of function inside the RKHS �f,1,C= which is able
to satisfy the conditions given in Lemma 6.4 and based upon that, with additional assumptions on
the boundedness of the Koopman operator Ki acting over the RKHS �f,1,C= , we can prove that
the Koopman operator is closable over the RKHS �f,1,C= . Explicitly, this particular sequence of
function is given in (56) and the action of bounded Koopman operator KiA where iA (z) = A z
on this particular sequence of function is given in (57).

56



With these deep function theoretic discussion, we are now ready to provide the complete clos-
able characterization for the bounded Koopman operator when the underlying RKHS is generated
by the Laplacian measure. The following theorem serves exactly this purpose.

Theorem 6.5. Let f be positive and finite. Consider i : C= → C= as a holomorphic function in
which every coordinate function of i are holomorphic from C= → C, which induces the bounded
Koopman operator Ki : D(Ki) → �f,1,C= such that i(z) = A z + � over the RKHS �f,1,C=
whose reproducing kernel is  f (·, ·). Then, there exists a sequence of function K# inside the
RKHS �f,1,C= as defined in (56) such that K# → 0 as # → ∞ and the Koopman operator
Ki is closable over the RKHS �f,1,C= if � ≡ 0, implying that i is purely linear in C=, that is
i(z) = A z. Further, if we let iA (z) B A z, then KiAK# → 0 as # → ∞.

Comment 6.6. In (16) and (43), concerns on the choice of the RKHS along with its kernel were
raised in the direction of the fact that a general choice of RKHS fails to exhibit invariance under
the action of the Koopman operator over the underlying RKHS. Therefore, it is advised in these
papers that one should carefully chose the reproducing kernel for which the Koopman operator
is not only densely defined over its corresponding RKHS but also it should be closable as well.
Additionally, as noted by these authors, in general it is not trivial to come-up with some kernel
function which is able to satisfy these operator-theoretic conditions.

However, in the aim of analysing the closable property of the Koopman operators over the
newly constructed RKHS �f,1,C= generated by the normalized Laplacian measure 3`f,1,C= , we
have successfully demonstrated that how the Koopman operators can be closable on the RKHS
�f,1,C= and therefore, this makes the Laplacian Kernel as a novel non-trivial desirable kernel
function.

6.3. Failure of closability of Koopman operator with GRBF
Now, that we have successfully demonstrated the closability of the Koopman operators over

the RKHS �f,1,C= , we will analyse now that how the Koopman operator fails to be closable with
respect to the Gaussian Radial Basis Kernel Function whose norm for the function space is given
in (5). The main reason why we fail to achieve the closability of the Koopman operators when it
interacts with Gaussian Radial Basis Function Kernel is because the of the way we have defined
the inner-product for the function space corresponding to the Gaussian Radial Basis Function
Kernel (cf. (96; 97)). In particular, the measure present in the norm for the function space in (5)
is unable to make the !2−integration finite. This can be easily understood as follows if we chose
to follow to construct the same variant of sequence of functions that we constructed previously.
To that recall the domain defined in (53) and  2,f

exp (x, z) as the Gaussian Radial Basis Function
Kernel and then we have following:

 
2,f
exp (−ℨ+) = exp

(
−
‖ z + z‖2

2
f

)
= exp

(
−

4‖ z‖2
2

f

)
.
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With the subspace given in (54), we see that

‖ z# ‖2 
2,f
exp (−ℨ+,# ) =‖ z# ‖2 exp

(
−

4‖ z‖2
2

f

)
=⇒ lim

#→0
‖ z# ‖2 

2,f
exp (−ℨ+,# ) = lim

#→0

{
‖ z# ‖2 exp

(
−

4‖ z# ‖2
2

f

)}
=0 · 1
=0.

Obviously, the above sequence do indeed converges to 0. However, the sequence of function
‖ z# ‖2 

2,f
exp (−ℨ+,# ) = ‖ z# ‖2 exp

(
− 4‖ z‖2

2
f

)
fails to exist in the Hilbert function space defined in

(6). This can be learned easily from the following verification:‖ z# ‖2 exp

(
−

4‖ z‖2
2

f

)2

f

=
2=f2=

c=
‖ z# ‖2

2

∫
C=

exp

(
−

4‖ z‖2
2

f

)
4f

2 ∑=
8=1 (I8−I8 )2

3+ (z)

≤ 2=f2=

c=
‖ z# ‖2

2

∫
C=
4f

2 ∑=
8=1 (I8−I8 )2

3+ (z)

≮∞.

Since, the above sequence of function fails to exist in the RKHS �f as given in (6), therefore we
fail to construct a sequence by which we can show the closability of the Koopman operators over
the RKHS �f .

7. Conclusion

In this paper, we explicitly refer ‘3`f,1,C= ’ as the normalized Laplacian measure defined
over the entire C=. The pursuit of having this unprecedented way of study for the normalized
Laplacian measure is duly motivated by taking the gauge transformation of the Laplacian Kernel
Function. As already mentioned, the underlying concern for this study is we consider only lim-
ited number of snapshots or data vector for fluid flow across cylinder experiment to generate the
desired Koopman modes via the method of the Kernelized Extended Dynamic Mode Decomposi-
tion. For the data driven discovery for this particular experiment, both Laplacian Kernel Function
and Gaussian Radial Basis Function Kernel were employed. However, based upon the empirical
evidence presented, we learned that it was only the Laplacian Kernel Function which was able
to discover the desired dominant Koopman modes from the limited availability of snapshots and
this manuscripts serves the purpose of reporting these exciting experimental insights. The other
great deal of insights present in this manuscript is the amalgamation of the random matrix theory
topics to execute the Kernelized Extended Dynamic Mode Decomposition.

Lastly, apart from the routine operator theoretic characterizations of the Koopman operators
or the composition operators along with other of its variants such as the weighted composition
operators, in this paper we consider the closable nuance of the Koopman operators as well. Once,
we have derived the regular and basic operator theoretic properties for the corresponding function
space of the RKHS �f,1,C= such as boundedness, essential norm estimates and compactness, we
further indeed, proved that the Koopman operators are closable over this RKHS. It should be noted

58



that Koopman operators have been studied in great details by various authors and mathematicians
in (35–37; 42; 43; 90; 94; 104) in various settings of function spaces including those which cor-
responds to function space containing entire functions of exponential type (14). In particular,
as observed in (14), Koopman operators fails to be compact in such spaces. However, we fail to
encounter relevant discussion on the closability for the Koopman operators in the previously cited
manuscripts, but this manuscript makes a successful attempts to enlighten us into these directions
over the newly constructed Hilbert space along with an extra edge of reproducing kernel theory.

8. Acknowledgement

This manuscript is directed towards the scope of performing scientific machine learning and
data acquisition by borrowing relevant and contemporary mathematical strategies that exists.
Hence, the present research work is scripted in the julia programming language coded over
the Google Collab online platform. The validity of this contribution is immediately justified
when we observe that is little to nothing research contribution in the light of this coding language.
However, we do see almost every research contribution of the present research agenda either on
Python or Matlab. The author acknowledges the Matlab coding support from his PhD advisor
Dr. Joel A. Rosenfeld which help him making the corresponding julia codes for fluid flow
across cylinder experiment. The Koopman operator theory analysis over the RKHS presented in
this paper was a smooth research journey and the author would like to thanks his past various suc-
cessful mathematician collaborators with whom he learnt all these operator theory and functional
analysis topics in great details.

References

[1] Alexander, R., and Giannakis, D. Operator-theoretic framework for forecasting nonlinear time series with
kernel analog techniques. Physica D: Nonlinear Phenomena 409 (2020), 132520. 8

[2] Aronszajn, N. Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 3 (1950),
337–404. 2, 4, 17

[3] Baddoo, P. J., Herrmann, B., McKeon, B. J., and Brunton, S. L. Kernel learning for robust Dynamic Mode
Decomposition: Linear and Nonlinear disambiguation optimization. Proceedings of the Royal Society A 478, 2260
(2022), 20210830. 8

[4] Bagheri, S. Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics 726 (2013),
596–623. 11

[5] Bayart, F. Parabolic composition operators on the ball. Advances in Mathematics 223, 5 (2010), 1666–1705. 27
[6] Bayart, F. Composition operators on the polydisk induced by affine maps. Journal of Functional Analysis 260,

7 (2011), 1969–2003. 27
[7] Belkin, M., Ma, S., and Mandal, S. To understand deep learning we need to understand kernel learning. In

International Conference on Machine Learning (2018), PMLR, pp. 541–549. 17
[8] Berezin, F. A. General Concept of Quantization. Communications in Mathematical Physics 40 (1975), 153–174.

17
[9] Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge University Press, 2004. 29

[10] Brunton, S. L., and Kutz, J. N. Data-driven science and engineering: Machine learning, dynamical systems,
and control. Cambridge University Press, 2022. 6, 42

[11] Burov, D., Giannakis, D., Manohar, K., and Stuart, A. Kernel analog forecasting: Multiscale test problems.
Multiscale Modeling & Simulation 19, 2 (2021), 1011–1040. 8

[12] Carswell, B., MacCluer, B. D., and Schuster, A. Composition operators on the Fock space. Acta Sci.
Math.(Szeged) 69, 3-4 (2003), 871–887. 27, 36

[13] Caselle, M., and Magnea, U. Random matrix theory and symmetric spaces. Physics reports 394, 2-3 (2004),
41–156. 12

[14] Chacón, G., and Giménez, J. Composition operators on spaces of Entire functions. Proceedings of the American
Mathematical Society 135, 7 (2007), 2205–2218. 27, 59

59



[15] Chen, L., and Xu, S. Deep Neural Tangent Kernel and Laplace Kernel have the same RKHS. arXiv preprint
arXiv:2009.10683 (2020). 17

[16] Colbrook, M. J. The Multiverse of Dynamic Mode Decomposition Algorithms. arXiv preprint arXiv:2312.00137
(2023). 7, 57

[17] Colbrook, M. J., and Townsend, A. Rigorous data-driven computation of spectral properties of Koopman
operators for dynamical systems. Communications on Pure and Applied Mathematics 77, 1 (2024), 221–283. 15

[18] Conway, J. B. A Course in Functional Analysis, vol. 96. Springer, 2019. 25, 54
[19] Cook, R. D., and Forzani, L. On the mean and variance of the generalized inverse of a singular Wishart matrix.

Electronic Journal of Statistics 5 (2011). 54
[20] Cowen, C. C. Composition operators on �2. Journal of Operator Theory (1983), 77–106. 28
[21] Cowen Jr, C. C. Composition operators on spaces of analytic functions. Routledge, 2019. 27
[22] Das, S., and Giannakis, D. Koopman spectra in reproducing kernel Hilbert spaces. Applied and Computational

Harmonic Analysis 49, 2 (2020), 573–607. 8
[23] Das, S., Giannakis, D., and Slawinska, J. Reproducing kernel Hilbert space compactification of unitary evolu-

tion groups. Applied and Computational Harmonic Analysis 54 (2021), 75–136. 8
[24] Díaz-García, J. A., and Gutiérrez-Jáimez, R. Distribution of the generalised inverse of a random matrix and

its applications. Journal of Statistical Planning and Inference 136, 1 (2006), 183–192. 54
[25] Doan, M. L., Khoi, L. H., and Le, T. Composition operators on Hilbert spaces of entire functions of several

variables. Integral Equations and Operator Theory 88 (2017), 301–330. 27
[26] Edelman, A., and Rao, N. R. Random matrix theory. Acta numerica 14 (2005), 233–297. 11, 12, 13
[27] Fasshauer, G. E. Meshfree approximation methods with MATLAB, vol. 6. World Scientific, 2007. 3
[28] Fujii, K., and Kawahara, Y. Dynamic Mode Decomposition in vector-valued reproducing kernel Hilbert spaces

for extracting dynamical structure among observables. Neural Networks 117 (2019), 94–103. 8
[29] Garnett, J. Bounded Analytic Functions, vol. 236. Springer Science & Business Media, 2007. 29
[30] Geifman, A., Yadav, A., Kasten, Y., Galun, M., Jacobs, D., and Ronen, B. On the similarity between the

Laplace and Neural Tangent Kernels. Advances in Neural Information Processing Systems 33 (2020), 1451–1461.
3, 17

[31] Geifman, A., Yadav, A., Kasten, Y., Galun, M., Jacobs, D., and Ronen, B. On the Similarity between the
Laplace and Neural Tangent Kernels. InAdvances in Neural Information Processing Systems (2020), H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., pp. 1451–1461. 3, 17

[32] Giannakis, D., and Das, S. Extraction and prediction of coherent patterns in incompressible flows through
space–time Koopman analysis. Physica D: Nonlinear Phenomena 402 (2020), 132211. 8

[33] Giraud, B., and Peschanski, R. On positive functions with positive Fourier transforms. Acta Physica Polonica
B 37 (2006), 331. 3

[34] Gonzalez, E., Avazpour, L., Kamalapurkar, R., and Rosenfeld, J. A. Modeling Partially Unknown Dy-
namics with Continuous Time DMD. In 2023 American Control Conference (ACC) (2023), IEEE, pp. 2913–2918.
6

[35] Hai, P. V., et al. Boundedness and Compactness of Weighted Composition Operators on Fock Spaces �? (C) .
Acta Mathematica Vietnamica 41, 3 (2016), 531–537. 59

[36] Hai, P. V., and Khoi, L. H. Complex symmetric weighted composition operators on the Fock space in several
variables. Complex Variables and Elliptic Equations 63, 3 (2018), 391–405. 36

[37] Hai, P. V., and Rosenfeld, J. A. Weighted Composition Operators on the Mittag-Leffler Spaces of Entire Func-
tions. Complex Analysis and Operator Theory 15, 1 (2021), 1–26. 36, 38, 59

[38] Hall, B. C. Quantum theory for Mathematicians. Springer, 2013. 15, 34
[39] Halmos, P. R. A Hilbert space problem book, vol. 19. Springer Science & Business Media, 2012. 6
[40] Hitczenko, P., and Kwapien, S. On the Rademacher series, Probability in Banach Spaces, Nine, Sandbjerg,

Denmark, J. Hoffmann–Jørgensen, J. Kuelbs, MB Marcus, Eds. Birkhauser, Boston 31 (1994), 36. 13
[41] Hui, L., Ma, S., and Belkin, M. Kernel machines beat deep neural networks on mask-based single-channel speech

enhancement. Proc. Interspeech 2019 (2019), 2748––2752. 3
[42] Ikeda, M., Ishikawa, I., and Sawano, Y. Boundedness of composition operators on reproducing kernel Hilbert

spaces with analytic positive definite functions. Journal of Mathematical Analysis and Applications 511, 1 (2022),
126048. 59

[43] Ikeda, M., Ishikawa, I., and Schlosser, C. Koopman and Perron–Frobenius operators on reproducing kernel
Banach spaces. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 12 (2022). 7, 57, 59

[44] Ivanov, D. A. Random-matrix ensembles in p-wave vortices. In Vortices in unconventional superconductors and
superfluids. Springer, 2002, pp. 253–265. 12

[45] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in Neural Information Processing Systems 31 (2018). 17

[46] Janson, S., Peetre, J., and Rochberg, R. Hankel forms and the Fock space. Revista Matematica Iberoamericana
60



3, 1 (1987), 61–138. 17, 27
[47] Kamalapurkar, R., and Rosenfeld, J. A. An Occupation Kernel approach to Optimal Control. arXiv preprint

arXiv:2106.00663 (2021). 6
[48] Kevrekidis, I., Rowley, C. W., and Williams, M. A kernel-based method for data-driven Koopman spectral

analysis. Journal of Computational Dynamics 2, 2 (2016), 247–265. 8
[49] Khosravi, M. Representer theorem for learning Koopman operators. IEEE Transactions on Automatic Control

(2023). 8
[50] Klus, S., Bittracher, A., Schuster, I., and Schütte, C. A kernel-based approach to molecular conformation

analysis. The Journal of Chemical Physics 149, 24 (2018).
[51] Klus, S., Nüske, F., and Hamzi, B. Kernel-based approximation of the Koopman generator and Schrödinger

operator. Entropy 22, 7 (2020), 722. 8
[52] Koopman, B. O. Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy

of Sciences 17, 5 (1931), 315–318. 4
[53] Korda, M., and Mezić, I. On convergence of Extended Dynamic Mode Decomposition to the Koopman operator.

Journal of Nonlinear Science 28 (2018), 687–710. 6
[54] Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L. Dynamic Mode Decomposition: Data-Driven

Modeling of Complex Dystems. SIAM, 2016. 11
[55] Kutz, J. N., Fu, X., and Brunton, S. L. Multiresolution Dynamic Mode Decomposition. SIAM Journal on

Applied Dynamical Systems 15, 2 (2016), 713–735. 6
[56] Le, T. Normal and isometric weighted composition operators on the Fock space. Bulletin of the London Mathe-

matical Society 46, 4 (2014), 847–856. 38
[57] Le, T. Composition operators between Segal–Bargmann spaces. Journal of Operator Theory 78, 1 (2017),

135–158. 4, 38
[58] Lorenz, Edward N. Deterministic nonperiodic flow. Journal of atmospheric sciences 20, 2 (1963), 130–141. 2
[59] Mehta, M. L. Random matrices. Elsevier, 2004. 12
[60] Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics

41 (2005), 309–325. 6
[61] Mezić, I. Koopman operator, geometry, and learning of dynamical systems. Not. Am. Math. Soc. 68, 7 (2021),

1087–1105. 2
[62] Mezić, I., and Banaszuk, A. Comparison of systems with complex behavior. Physica D: Nonlinear Phenomena

197, 1-2 (2004), 101–133. 6
[63] Morrison, Z., Abudia, M., Rosenfeld, J., and Kamalapurar, R. Dynamic Mode Decomposition of Control-

Affine Nonlinear Systems using Discrete Control Liouville Operators. arXiv preprint arXiv:2309.09817 (2023).
6

[64] Pedersen, G. K. Analysis now, vol. 118. Springer Science & Business Media, 2012. 54
[65] Peetre, J. The Berezin transform and Ha-plitz operators. Journal of Operator Theory (1990), 165–186. 17
[66] Philipp, F., Schaller, M., Worthmann, K., Peitz, S., and Nüske, F. Error bounds for kernel-based approxima-

tions of the Koopman operator. arXiv preprint arXiv:2301.08637 (2023). 8
[67] Proctor, J. L., Brunton, S. L., and Kutz, J. N. Dynamic Mode Decomposition with Control. SIAM Journal on

Applied Dynamical Systems 15, 1 (2016), 142–161. 6
[68] Rasmussen, Carl Edward and Williams, Christopher KI and others. Gaussian Processes for Machine

Learning, vol. 1. Springer, 2006. 3
[69] Reed, M. Methods of modern mathematical physics: Functional Analysis. Elsevier, 2012. 38, 54
[70] Reed, M., and Simon, B. Methods of modern mathematical physics. 1: Functional Analysis. Academic Press,

April 1980. 15, 38
[71] Rosenfeld, J. A., and Kamalapurkar, R. Singular Dynamic Mode Decomposition. SIAM Journal on Applied

Dynamical Systems 22, 3 (2023), 2357–2381. 6
[72] Rosenfeld, J. A., Kamalapurkar, R., Gruss, L. F., and Johnson, T. T. On Occupation Kernels, Liouville

operators, and Dynamic Mode Decomposition. In 2021 American Control Conference (ACC) (2021), IEEE,
pp. 3957–3962.

[73] Rosenfeld, J. A., Kamalapurkar, R., Gruss, L. F., and Johnson, T. T. Dynamic Mode Decomposition for
Continuous Time Systems with the Liouville operator. Journal of Nonlinear Science 32 (2022), 1–30. 6, 11, 18

[74] Rosenfeld, J. A., Kamalapurkar, R., Russo, B., and Johnson, T. T. Occupation kernels and densely defined
Liouville operators for system identification. In 2019 IEEE 58th Conference on Decision and Control (CDC)
(2019), IEEE, pp. 6455–6460. 5

[75] Rosenfeld, J. A., Russo, B., and Dixon, W. E. The Mittag Leffler reproducing kernel Hilbert spaces of entire
and analytic functions. Journal of Mathematical Analysis and Applications 463, 2 (2018), 576–592. 17

[76] Rosenfeld, J. A., Russo, B. P., and Kamalapurkar, R. Theoretical Foundations for the Dynamic Mode De-
composition of High Order Dynamical Systems. arXiv preprint arXiv:2101.02646 (2021). 6, 18

61



[77] Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S. Spectral analysis of nonlinear
flows. Journal of fluid mechanics 641 (2009), 115–127. 6

[78] Rudin, W. Real and complex analysis. (Mcgraw-Hill International Editions: Mathematics series) (1987). 14
[79] Rudin, W. Functional Analysis 2nd ed. International Series in Pure and Applied Mathematics. McGraw-Hill,

Inc., New York (1991). 28, 54
[80] Russo, B. P., and Rosenfeld, J. A. Liouville operators over the Hardy space. Journal of Mathematical Analysis

and Applications 508, 2 (2022), 125854. 6
[81] Saitoh, S. Hilbert spaces induced by Hilbert space valued functions. Proceedings of the American Mathematical

Society 89, 1 (1983), 74–78. 17
[82] Saitoh, S. Integral transforms, reproducing kernels and their applications, vol. 369. CRC Press, 1997. 17
[83] Sarker, I. H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research

directions. SN Computer Science 2, 6 (2021), 420. 2
[84] Scheffé, H. A useful convergence theorem for probability distributions. The Annals of Mathematical Statistics

18, 3 (1947), 434–438. 14
[85] Schmid, P. J. Dynamic Mode Decomposition of Numerical and Experimental Data. Journal of fluid mechanics

656 (2010), 5–28. 6, 10
[86] Schmid, P. J. Application of the Dynamic Mode Decomposition to experimental data. Experiments in fluids 50

(2011), 1123–1130. 6
[87] Schmid, P. J. Dynamic Mode Decomposition and its variants. Annual Review of Fluid Mechanics 54 (2022),

225–254. 6
[88] Schölkopf, B. The kernel trick for distances. Advances in Neural Information Processing Systems 13 (2000). 6
[89] Schröder, E. Ueber iterirte functionen. Mathematische Annalen 3, 2 (1870), 296–322. 4
[90] Shapiro, J. H. The essential norm of a composition operator. Annals of mathematics (1987), 375–404. 59
[91] Shapiro, J. H. Composition operators: And Classical Function Theory. Springer Science & Business Media,

2012. 27
[92] Singh, H. A new kernel function for better AI methods. In 2023 AMS Spring Eastern Sectional Meeting (2023),

no. 68-Computer Science, 68T-Artificial Intelligence and 68T07-Artificial Neural Networks and Deep Learning in
April 1, 2023, AMS. 17

[93] Singh, H. An appointment with Reproducing Kernel Hilbert Space generated by Generalized Gaussian RBF as
!2−measure, 2023. arXiv:2312.10693 17

[94] Singh, R. K., and Manhas, J. S. Composition operators on function spaces. Elsevier, 1993. 59
[95] Stein, E. M., and Shakarchi, R. Complex analysis, vol. 2. Princeton University Press, 2010. 25, 26, 30
[96] Steinwart, I., and Christmann, A. Support vector machines. Springer Science & Business Media, 2008. 4, 57
[97] Steinwart, I., Hush, D., and Scovel, C. An explicit description of the reproducing kernel Hilbert spaces of

Gaussian RBF kernels. IEEE Transactions on Information Theory 52, 10 (2006), 4635–4643. 4, 57
[98] Tao, T. Topics in random matrix theory, vol. 132. American Mathematical Society, 2023. 11
[99] Tong, Y. L., and Tong, Y. Fundamental properties and sampling distributions of the multivariate normal distri-

bution. Springer, 1990. 12
[100] Villani, A. Another note on the inclusion !? (`) ⊂ !@ (`) . The American Mathematical Monthly 92, 7 (1985),

485–C76. 16
[101] Williams, D. Probability with Martingales. Cambridge University Press, 1991. 14
[102] Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. A data–driven approximation of the Koopman operator:

Extending Dynamic Mode Decomposition. Journal of Nonlinear Science 25 (2015), 1307–1346. 8, 11, 18
[103] Williams, M. O., Rowley, C. W., and Kevrekidis, I. G. A kernel-based method for data-driven Koopman spectral

analysis. Journal of Computational Dynamics 2, 2 (2015), 247–265. 6, 18
[104] Zhao, L. Invertible Weighted Composition Operators on the Fock Space of C# . Journal of Function Spaces 2015

(2015). 36, 59
[105] Zhao, Z., and Giannakis, D. Analog forecasting with dynamics-adapted kernels. Nonlinearity 29, 9 (2016),

2888. 8
[106] Zhu, K. Spaces of Holomorphic Functions in the Unit Ball, vol. 226. Springer, 2005. 37
[107] Zhu, K. Analysis on Fock Spaces, vol. 263. Springer Science & Business Media, 2012. 17, 27
[108] Zirnbauer, M. R. Riemannian symmetric superspaces and their origin in random-matrix theory. Journal of

Mathematical Physics 37, 10 (1996), 4986–5018. 12
[109] Song, Jialu and Xie, Hujin and Zhong, Yongmin and Gu, Chengfan and Choi, Kup-Sze Dynamic Mode

Decomposition for soft tissue deformation modelling. Applied Mathematical Modelling, 127 (2024), 60–70. 6

62

https://meetings.ams.org/math/spring2023e/meetingapp.cgi/Paper/23517
https://arxiv.org/abs/2312.10693

	Introduction
	Dynamical Systems & Hilbert space
	Interface between Operator theory & Dynamical System
	What this paper offers?
	Motivation for this paper
	Offerings of this paper
	Detail plan of the paper


	DMD with Limited Data Acquisition
	Extended Dynamic Mode Decomposition
	Review of eDMD

	On Limited Data Acquisition
	Using random matrix theory for limited data acquisition
	Preliminary to the Random Matrix Theory
	Choice of random matrix

	Theory for augmenting data-set snapshots with random matrix
	Answer to Question 1
	Answer to Question 2

	Laplacian Kernel as measure
	A word on Laplacian Kernel viewed as measure

	eDMD algorithm with Limited Data Acquisition

	RKHS from the Laplacian measure
	Preliminaries
	Notation
	Tensor Product Notation

	Function space corresponding to the Laplacian measure in sense
	Orthonormal Basis
	Reproducing Kernel
	Weakly converging sequence in RKHS 
	Point-wise evaluation inequality
	Bounds for norm of reproducing kernel

	Koopman Operators on RKHS from the Laplacian measure
	Koopman operators over RKHS 
	Boundedness of Koopman operators over RKHS 
	Boundedness of Koopman operators
	Some words on the Affine structure of 

	Essential norm estimates of Koopman operators over RKHS 
	Compactness of Koopman operators over RKHS 

	Experimental Results for Fluid flow across cylinder
	Construction of Koopman Modes via Laplacian and GRBF Kernel Functions
	Real dominant Koopman modes
	Imaginary dominant Koopman modes

	Executive conclusion
	Dominant Koopman modes constructed via Laplacian & GRBF
	Gram-Matrix for data-set snapshots


	Why RKHS generated by the Laplacian measure is novel?
	Review of Closable operator in Hilbert space
	Closability of Koopman operator over the RKHS of Laplacian measure
	Failure of closability of Koopman operator with GRBF

	Conclusion
	Acknowledgement

