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Abstract. Gaussian Radial Basis Function (RBF) Kernels are the most-often-employed
kernels in artificial intelligence and machine learning routines for providing optimally-best
results in contrast to their respective counter-parts. However, a little is known about the ap-
plication of the Generalized Gaussian Radial Basis Function on various machine learning al-
gorithms namely, kernel regression, support vector machine (SVM) and pattern-recognition
via neural networks. The results that are yielded by Generalized Gaussian RBF in the
kernel sense outperforms in stark contrast to Gaussian RBF Kernel, Sigmoid Function and
ReLU Function.

This manuscript demonstrates the application of the Generalized Gaussian RBF in the
kernel sense on the aforementioned machine learning routines along with the comparisons
against the aforementioned functions as well. Furthermore, we present the explicit descrip-
tion for the reproducing kernel Hilbert Space that is generated by the measure of Generalized
Gaussian RBF in L2−measure theoretic sense. Finally, we provide the future directions in
terms of eigen-function decomposition and reduced order modeling application of General-
ized Gaussian RBF.

1. Introduction

Artificial Intelligence and machine learning algorithms takes the advantage of various
important mathematical functions that arises in the function theory. One such function is
Gaussian Radial Basis Function (GRBF) given as:

gσ2(r) :=def exp
(
−σ2r2

)
; σ > 0.

Let ∥ · ∥2 be the usual Euclidean norm on Rd, this function is comfortably synonymous
to its kernel notion which is famously called as the GRBF Kernel given as Kσ(x, z) :=def
gσ2(∥x− z∥2). Explicitly that is

Kσ(x, z) = exp
(
−σ2∥x− z∥22

)
; σ > 0.

The GRBF Kernel is a building block for various learning architecture such as spatial sta-
tistics [Ste99] dynamical system identification [tRKJ19], machine learning [WR06] to name
a few. This manuscript extend the idea of GRBF Kernel to what called as the Generalized
GRBF Kernel (GGRBF Kernel) introduced in [Sin23a].
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Definition 1.1. Let σ > 0 and σ0 ≥ 0 then the GGRBF Kernel is defined as:

Kσ,σ0 (x− z) :=def gσ2(∥x− z∥2)e
(
g
σ2
0
(∥x−z∥2)−1

)

= e−σ2∥x−z∥22ee
−σ2

0(∥x−z∥22)−1.(1)

Note that if σ0 = 0, then we get the traditional GRBF kernel. The GGRBF was introduced
in [KKA+20] to provide better results in contrast to GRBF results in terms of convergence
and stability for interpolation problems on Franke’s test function and Runge’s function or
solving the system with Tikhonov regularization and Riley’s algorithm as well.

Taking much of the inspiration from [KKA+20], the application of GGRBF Kernel was
documented in [Sin23a] in terms of support vector machine (SVM), kernel regression and
pattern recognition via the activation function for neural network.

These stat-of-the-art methods in learning architecture are leveraged by a peculiar topic
from Hilbert function space called as Reproducing Kernel Hilbert Space (RKHS) [Aro50].
The analysis from the RKHS theory for the GRBF Kernel has already been established by
[SHS06] in which answers related to the norms and feature space were answered. However,
with the present empirical evidence supporting better results obtained by employing the
GGRBF kernel, it becomes important to perform the same investigation for the GGRBF
Kernel.

The present paper is organized as follows: we have essential preliminaries of RKHS in
Section 2. Then we have results from the function theory in Section 3 followed by empirical
comparison results in Section 4.

2. Notation & Preliminaries

2.1. Hypergeomtric Function Notation. We recall important basic calculus results re-
lated to the Generalized Hypergeometric Function pFq

[
a1 a2 ··· ap
b1 b2 ··· bq

; z
]

[Bar06]. With the
help of Pochhammer symbol [AS68] (rising factorial notation) given as (a)k = Γ(a+k)

Γ(a)
=

a(a+ 1) · · · (a+ k − 1), then pFq

[
a1 a2 ··· ap
b1 b2 ··· bq

; z
]

is given as

pFq

[
a1 a2 · · · ap
b1 b2 · · · bq

; z

]
:=def

∞∑
l=0

∏p
i=1 (ai)l∏p
i=1 (bi)l

zl

l!
.(2)
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Example 2.1. We have the summation
∑∞

l=0
1

(l+x)n+1
1
l!

in terms of the Generalized Hyper-
geometric Function given as:

∞∑
l=0

1

(l + x)n+1

1

l!
=

∞∑
l=0

(
Γ(l + x)

Γ (l + x+ 1)

)n+1
1

l!

=
∞∑
l=0

(
(x)l Γ(x)

(x+ 1)l Γ(x+ 1)

)n+1
1

l!

=
1

xn+1 n+1Fn+1

[
x

x+ 1
; 1

]
.

The example presented above will be useful for further great details in the present manuscript.
So to avoid heavy-notation-clutter, we write

n+1Fn+1

[
x

x+ 1
; 1

]
:=notation Fn,x,1(3)

from now on-wards upon its need. Note that Fn,∞,1 = e.

2.2. Field Notation. The set of natural numbers in union with 0 is denoted by W, that
is W := 0, 1, 2, . . .. We use Kronecker delta δnm on non-negative integers n and m to depict
that, δnm = 1 whenever n = m and δnm = 0 if n ̸= m. We denote a complex number
z = x+ iy where x and y ∈ R. With that z, its conjugate-part is given as z = x− iy along
with its absolute value as |z|2 = z · z = x2 + y2. We reserve symbol K to treat with choice
of fields on which we will operate upon; in particular K can either be R or C.

2.3. Tensor Product Notation. We recall the tensor product between two functions, say
f1, f2 : X → K given as f1 ⊗ f2 : X ×X → K. Then, for all x, x′ ∈ X the tensor product
f1 ⊗ f2 is defined as f1 ⊗ f2(x, x

′) := f1(x)f2(x
′).

2.4. Preliminaries.

Definition 2.2. Let X = ∅, then a function k : X × X → K is called the kernel on X
if there exists a K−Hilbert space (H, ⟨·, ·⟩H) accompanied by a map Φ : X → H such that
∀x, x′ ∈ X, we have

k(x, x′) = ⟨Φ(x′),Φ(x)⟩H .(4)
We regard Φ as the feature map and H as the feature space of k.

Now that we have introduced the basic notion from the kernel theory in the definition
provided above, we can now comfortably define the building block of this paper: Reproducing
Kernel Hilbert Space, RKHS.

Definition 2.3. Let X = ∅ and (H, ⟨·, ·⟩H) be the Hilbert function space over X.
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(1) The space H is called as the reproducing kernel Hilbert space (RKHS) if ∀x ∈ X,
the evaluation functional Ex : H → K defined as Ex(f) := f(x), f ∈ H is continuous.

Definition 2.4. A function k : X×X → K is called reproducing kernel of H if we have:
(1) k(·, x) ∈ H ∀x ∈ X, that is ∥k(·, x)∥H < ∞, and
(2) k(·, ·) has the reproducing property; that is

f(x) = ⟨f, k(·, x)⟩H ∀f ∈ H and x ∈ X.

It is worth-full to mention that the norm convergence yields the point-wise convergence
inside RKHS. This fact can be readily learned due to the continuity of evaluation functional.
This is demonstrated as follows for an arbitrary f ∈ H and {fn}n ∈ H with ∥f − fn∥H → 0
as n → ∞, then

lim
n↑∞

fn(x) = lim
n↑∞

Ex (fn)

=(continuity of Ex) Ex (f)
= f(x).

Now, we will state an important theorem from [Aro50] which dictates the relationship be-
tween the reproducing kernel of the RKHS H and the orthonormal basis of it.

Theorem 2.5 ([Aro50]). Let H be an RKHS over an nonempty set X, Then k : X ×
X → K defined as k(x, x′) := ⟨Ex, Ex′⟩H for x, x′ ∈ X is the only reproducing kernel of H.
Additionally, for some index set I, if we have {ei}i∈I as an orthonormal basis (ONB) then
for all x, x′ ∈ X, we have

k(x, x′) =
∑
i∈I

ei(x)ei(x′),(5)

with an absolute convergence.

3. Function space

Let d ∈ N, σ > 0 and σ0 ≥ 0 and f be a holomorphic function f : Cd → C, we write first
the measure of our interest:

dµσ,σ0,d(z) := e−σ2|z|2ee
−σ0|z|

2−1dVCd(z),(6)

Here, ‘dVCd(z)’ is the usual Lebesgue measure on entire Cd. For d = 1, we write simply
dµσ,σ0(z) to denote the typical Lebesgue area measure on C. We now provide the inner
product associated with this measure as:

⟨f, g⟩σ,σ0,Cd := Nσ,σ0,d

∫
Cd

f(z)g(z)dµσ,σ0(z).(7)
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Here, ‘Nσ,σ0,d’ is the normalization constant whose value is explicitly given as (eσ2/2π)
d. Once

we have define the inner product for the space, the norm for holomorphic function f : Cd → C
is:

∥f∥2σ,σ0,Cd :=

(
eσ2

2π

)d ∫
Cd

|f(z)|2dµσ,σ0(z).(8)

We write

Hσ,σ0,Cd :=
{
f : Cd → C s.t. ∥f∥σ,σ0,Cd < ∞

}
.(9)

Once we have defined norm in (8) and the associated Hilbert space in (9), we can provide
the following formulation which makes the Hilbert space Hσ,σ0,Cd as an RKHS.

Lemma 3.1. For all σ > 0, σ0 ≥ 0 and all compact sets K ⊂ Cd, there exists a positive
constant cσ,σ0,d such that for all z ∈ K and f ∈ Hσ,σ0,Cd, we have

|f(z)| ≤ cσ,σ0,d∥f∥σ,σ0,Cd .(10)

Proof. Denote B(0,1) as the complex unit ball in C. Define

cσ,σ0,d := sup
z∈K+Bd

(0,1)

{
e−σ2|z|2ee

−σ2
0 |z|

2
−1
}
.

In the spirit of [SHS06, Lemma-3, Page 4639], we have
d∏

j=1

rj|f(z)|2 ≤
1

(2π)d

d∏
j=1

rj

∫
[0,2π]d

∣∣f (z1 + r1e
iθ1 , . . . , z1 + rde

iθd
)∣∣2 dθ.

Integration of above with respect to (r1, . . . , rd) ∈ [0, 1]d yields:

|f(z)|2 ≤ 1

(2π)d

∫
z+Bd

(0,1)

|f (z′) |2dV (z′)

≤cσ,σ0,d

(2π)d

∫
z+Bd

(0,1)

|f (z′) |2e−σ2|z′|2ee
−σ2

0 |z
′|2−1dV (z′)

≤ cσ,σ0,d

(eσ2)d
∥f∥2σ,σ0,d

.

In particular, we have cσ,σ0,d =
√

cσ,σ0,d/(eσ2)d and hence the result is established. □

Establishing Lemma 3.1 yields immediately that Hσ,σ0,Cd is indeed an RKHS and we state
here as an important follow-up corollary.

Corollary 3.2. The space
(
Hσ,σ0,Cd , ⟨·, ·⟩σ,σ0,Cd

)
is a RKHS for all σ > 0 and σ ≥ 0.
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3.1. Orthonormal Basis. We will need following technical result to establish the orthonor-
mal basis (ONB) for Hσ,σ0,Cd .

Lemma 3.3. For every σ > 0, σ0 ≥ 0 and n,m ∈ W, we have∫
C

znzmdµσ,σ0(z) =

(√
2πn!

eσ2n+2
Fn,σ̂,1

√
2πm!

eσ2m+2
Fm,σ̂,1

)
δnm(11)

where σ̂ = σ2
0/σ2 and Fn,σ̂,1 is defined in (3).

Proof. Employ the polar coordinate of z to have:∫
C

znzmdµσ,σ0(z) =

∫ ∞

0

rn+me−σ2r2ee
−σ2

0r
2
−1rdr

∫ 2π

0

ei(n−m)θdθ.(12)

The quantity
∫∞
0

rn+me−σ2r2ee
−σ2

0r
2
−1rdr

∫ 2π

0
ei(n−m)θdθ is 0 when n ̸= m. Now, assume that

n = m in (12), then: ∫
C

znzmdµσ,σ0(z) =2π

∫ ∞

0

r2ne−σ2r2ee
−σ2

0r
2
−1rdr

=
2π

e (σ2)n+1

∫ ∞

0

sne−see
−σ2

0/σ
2s

ds

=
2πΓ(n+ 1)

e (σ2)n+1

∞∑
l=0

1

l!(lσ̂ + 1)n+1

=
2πn!

eσ2n+2
Fn,σ̂,1 (use (3)).

Thus the result prevails. □

In the light of Theorem 2.5, we have to determine the ONB of Hσ,σ0,Cd .

Theorem 3.4. Let σ > 0, σ0 ≥ 0 and n ∈ W. Define {en}n∈W : C → C by

en(z) :=

√
σ2n

n!Fn,σ̂,1

zn ∀z ∈ C.(13)

Then the tensor-product system (en1 ⊗ · · · ⊗ end
)n1,...nd≥0 forms the ONB of Hσ,σ0,Cd.

Proof. We establish our result for d = 1 for the initial basic understanding. For this, let us
show that {en}n∈W forms an orthonormal system. So, consider z ∈ C and let m,n ∈ W.
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Then,

⟨en, em⟩σ,σ0 =
eσ2

2π

∫
C

en(z)em(z)dµσ,σ0(z)

=
eσ2

2π

√
σ2n

n!Fn,σ̂,1

√
σ2m

m!Fm,σ̂,1

∫
C

znzmdµσ,σ0(z)

=

{
1 if n = m

0 otherwise
(use Lemma 3.3).

The above result concludes that {en}n∈W is actually an orthonormal system. To this end, we
have to establish that it is also complete. So, for this, pick f ∈ Hσ,σ0,C with f(z) =

∑∞
l=0 alz

l

and observe that

⟨f, en⟩σ,σ0
=
eσ2

2π

∫
C

f(z)en(z)dµσ,σ0(z)

=
eσ2

2π

∞∑
l=0

al

∫
C

zlen(z)dµσ,σ0(z)

=
eσ2

2π

√
σ2n

n!Fn,σ̂,1

∞∑
l=0

al

∫
C

zlzndµσ,σ0(z)

=
eσ2

2π

√
σ2n

n!Fn,σ̂,1

∞∑
l=0

al

(√
2πl!

eσ2l+2
Fn,σ̂,1

√
2πn!

eσ2n+2
Fn,σ̂,1

)
δln

=

√
σ2n

n!Fn,σ̂,1

an
n!Fn,σ̂,1

σ2n

=

[√
σ2n

n!Fn,σ̂,1

]−1

an.

Since the constant σ2n/n!Fn,σ̂,1 ̸= 0 for any choice of n, hence, the condition that ⟨f, en⟩ = 0
for all n ∈ W yields that an = 0 for all n ∈ W, which results in conclusion that f ≡ 0.
Therefore, {en}n∈W is complete. Now, we establish these results in d−dimensional situation
by employing the tensor product notation Subsection 2.3. To this end, we see that

⟨en1 ⊗ · · · ⊗ end
, em1 ⊗ · · · ⊗ emd

⟩σ,σ0,d =
d∏

j=1

⟨enj
, emj

⟩σ,σ0 .

Hence the orthonormality of {en1 ⊗ · · · ⊗ end
}n1,...nd∈,Wd is established due to the orthonor-

mality of each ⟨enj
, emj

⟩σ,σ0 . We still need to ensure that this d−dimensional orthonormal
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system is complete. Now, observe

⟨f, en1 ⊗ · · · ⊗ end
⟩σ,σ0,d =

(
eσ2

2π

)d ∫
Cd

f(z)en1 ⊗ · · · ⊗ end
(z)dµσ,σ0,Cd (z)

=

(
eσ2

2π

)d ∞∑
l1,...,ld

al1,...,ldIl,d,

where Il,d =
∫
Cd z

l (en1 ⊗ · · · ⊗ end
(z)) dµσ,σ0,Cd (z). We further can simplify Id as follows:

Il,d =

∫
Cd

zlen1(z1) ∧ · · · ∧ end
(zd)dµσ,σ0(z1) ∧ · · · ∧ dµσ,σ0(zd)

=
d∏

j=1

(∫
C

z
lj
j enj

(zj)dµσ,σ0(zj)

)

=
d∏

j=1

(∫
C

z
lj
j zj

njdµσ,σ0(zj)

)

=
d∏

j=1

(√
2πlj!

eσ2lj+2
Flj ,σ̂,1

√
2πnj!

eσ2nj+2
Fnj ,σ̂,1

)
δljnj

al1,...,ld .

Finally, (
eσ2

2π

)d ∞∑
l1,...,ld

al1,...,ldIl,d =

 d∏
j=1

[√
σ2nj

nj!Fnj ,σ̂,1

]−1
 an1,...,nd

.

The further result for completeness in d−dimension follows a routine procedure from single-
dimension case as already discussed before. □

The following theorem provides the reproducing kernel for the Hilbert space Hσ,σ0,Cd de-
fined in (9).

Theorem 3.5. For σ > 0, σ0 ≥ 0 and σ̂ = σ2/σ2
0, the reproducing kernel for the space

Hσ,σ0,Cd is given as

K (z,w) :=
∞∑

n1,...,nd=0

λn (zw)n ,(14)

where muti-index notation is employed: n = (n1, . . . , nd) and λn =
∏d

i=1
σ2ni

ni!Fni,σ̂,1
.

Proof. We will demonstrate the desired proof as follows:



A NOVEL KERNEL FUNCTION FOR LEARNING ARCHITECTURE IN AI 9

(1) For w ∈ Cd, we will show that ∥K (·,w) ∥σ,σ0,d < ∞.

∥K (·,w) ∥2σ,σ0,d
=

(
eσ2

2π

)d ∫
Cd

|K (z,w) |2dµσ,σ0,d (z)

=

(
eσ2

2π

)d ∞∑
n1,...,nd

∞∑
m1,...,md

λnλmw
nwm

∫
Cd

znzmdµσ,σ0,d (z)(15)

=

(
eσ2

2π

)d ∞∑
n1,...,nd

λ2
n|w|2n

(
d∏

ni=1

∫
C

zni
i zi

midµσ,σ0(zi)

)
(16)

=

(
eσ2

2π

)d ∞∑
n1,...,nd

λ2
n|w|2n

(
d∏

ni=1

2πni!

σ2ni+2
Fni,σ̂,1

)

=
∞∑

n1,...,nd

|w|2n∏d
i=1

ni!
σ2ni

Fni,σ̂,1

.

We used the result of Theorem 3.4 from (15) to(16). For all w ∈ Cd, the quantity∑∞
n1,...,nd

|w|2n∏d
i=1(ni!/σ2ni )Fni,σ̂,1

achieves convergence. This implies that ∥K (·,w) ∥σ,σ0,d <

∞ for all w ∈ Cd. Therefore, the kernel function K(·,w) ∈ Hσ,σ0,Cd .
(2) Now, in order to establish the reproducing property of K(·,w) pick an arbitrary

f =
∑∞

n1,··· ,nd
an1,...,nd

wn ∈ Hσ,σ0,Cd . Then, consider the inner product of f with
K(·,w) as follows:

⟨f,K(·,w)⟩σ,σ0,Cd =

(
eσ2

2π

)d ∫
Cd

f(z)K (z,w)dµσ,σ0,Cd (z)

=

(
eσ2

2π

)d ∞∑
n1,··· ,nd

∞∑
l1,··· ,ld

an1,...,nd
λl1,...,ldw

n

(
d∏

i=1

2π

eσ2

σ2ni

ni!Fni,σ̂,1

)

=
∞∑

n1,...,nd=0

an1,...,nd
wn

=f (w) .

Hence, the desired result is achieved.
□

The proof in the preceding theorem to demonstrate reproducing kernel nature of K (z,w)
of Hσ,σ0,Cd utilizes the basic machinery borrowed from the two-part definition for reproducing
kernel given in Definition 2.4.
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4. Empirical Evidence and Results Comparison

4.1. Kernel Regression.

4.1.1. Example-1. Kernel regression of f(x) = e
(1−9x2)

4 +tan x+x
1
6 +sin xϑ(n) is performed via

both GRBF and (1). Here ϑ(n) is uniform random distributed number in (0, 1), x = n ∈ Z101.

Figure 1. [MATLAB] Kernel regression of f(x) = e
(1−9x2)

4 +tan x+x
1
6+sin xϑ(n).

4.1.2. Example-2. Kernel regression of f(x) = esinx−sinx2
+
√
2π|x+cosϑ(n)| is performed via

both GRBF and (1). Here ϑ(n) is uniform random distributed number in (0, 1), x = n ∈ Z101.

Figure 2. [MATLAB] Kernel regression of f(x) = esinx−sinx2
+

√
2π|x +

cosϑ(n)|.
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4.2. Support Vector Machine. Support vector machine (SVM) is implemented for the
the data classification and is performed via different choices of kernels; these kernels includes
the traditional Sigmoid, GRBF and (1).

Figure 3. [MATLAB] SVM classifier via different kernels.

Out of three kernels, (1) yields the lowest miss-classification for the data of 100 sampled
points.

4.3. Neural Network. Following examples provide optimally-best results by the (1) em-
ployment both as in the usage of Activation Function and neural net layer in deep convolu-
tional neural nets (DCNN).
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4.3.1. Activation Function. Consider an αReLU activation function, a simple modification
of powerful-traditional ReLU activation function from NN, defined as

f(x) :=

{
x if x > 0

αx if x ≤ 0.
(αReLU)

In the present experiment, a two 7-layered NNs are constructed; one with the activation
function defined by (αReLU) and one with (1). Thereafter, following performance tables
yields the respective results and comparison for the NNs.

Figure 4. [MATLAB] Performance comparison (1) (L) & (αReLU) (R) as the
NN activation function.

MATLAB script for the activation function of GGRBF is provided in Section 7.
4.3.2. DCNN. Above experiments demonstrate the concrete functionality of (1) as an acti-
vation function, it further motivates to perform DCNN. Therefore, in pursue of this, a typical
DCNN of 7-layered is constructed; one with the activation function defined by (αReLU) and
one with (1). In the following experiment, the training data contains 1500-28×28 gray-scale
letter images of A, B, and C in a 4-D array.

Figure 5. [MATLAB] 96.33% accuracy registered with (1) as DCNN neural
layer.
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Figure 6. [MATLAB] 91.87% accuracy registered with (αReLU) as DCNN
neural layer.

5. Future Directions

5.1. Eigen-function expansion of GGRBF. We recall the Mercer’s Theorem from [WR06,
Theorem 4.2, Page 96].
Theorem 5.1 (Mercer’s Theorem). Let (X , µ) be a finite measure space and k ∈ L∞ (X 2, µ2)
be a kernel such that Tk : L2 (X , µ) → L2 (X , µ) is positive definite. Let {ϕi}i ∈ L2 (X , µ) be
the normalized eigenfunctions of Tk associated with the eigenvalues {Λi}i. Then:

(1) the eigenvalues {Λ}i are absolutely summable
(2)

k (x,x′) =
∞∑
i=0

Λiϕi (x)ϕi (x
′)
∗(17)

holds µ2 almost everywhere, where the series converges absolutely and uniformly µ2

almost everywhere.
Example 5.2. With the application of Theorem 5.1, we can provide the eigen-function
decomposition of Kσ (x, z) = e−σ2(x−z)2 for x, z ∈ R, that is:

e−σ2(x−z)2 =
∞∑
i=0

Λiϕi (x)ϕi (z) , where(18)

Λi =
ασ2i(

α2

2

(
1 +

√
1 +

(
2σ
α

)2)
+ σ2

2

)i+1/2
(19)

ϕi (x) =

8

√
1 +

(
1 + 2σ

α

)2
√
2ii!

e
−
(√

1+( 2σ
α )

2
−1

)
α2x2

2 Hi

 4

√
1 +

(
2σ

α

)2

αx

 .(20)
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The expression {Hi (•)}i in (20) are the Hermite polynomials which are L2−orthonormal
against the weight α/πe−α2x2; that is:∫

R

ϕn(x)ϕm(x)
α

π
e−α2x2

dx = δnm.(21)

We have the graphical representation of first seven Hermite polynomials in Figure 7a and
Figure 7b.

−2 0 2

0

0.5

1

x− values

H
i(
x
)

H0(x)
H1(x)
H2(x)

0

0.5

1

(a) Hermite Polynomials Hi(x) for i = 0, 1, 2.

−2 0 2

−0.1

0

0.1

x− values

H
i(
x
)

H3(x)
H4(x)
H5(x)
H6(x)

−0.1

0

0.1

(b) Hermite Polynomials Hi(x) for i = 3, 4, 5, 6.

Based on the Hermite polynomials [Her64] and as its application for the eigen-decomposition
analysis for GRBF kernel, we have the following promising future research direction.

In the spirit of the application of the Mercer’s Theorem, we know the eigen-function de-
composition of the GRBF Kernel. However, presently, we are not fortunate to have such
a decomposition for the GGRBF Kernel. A preliminary investigation towards the desired
eigen-function decomposition of GGRBF Kernel (followed from [Ras06, Zhu97, Fas12]) di-
rects us to incorporate a new variety of function defined in (22).

Hn(x) :=(−1)neax
2

e−e−bx2+1 dn

dxn

(
e−ax2

ee
−bx2−1

)
(22)

into our desired eigen-function decomposition analysis. Here a > 0 and b ≥ 0 and therefore,
if a = 1 & b = 0 then Hi = Hi. The first two expression for Hn(x) are explicitly given as:

H1(x) =2ax+ 2bxe−bx2

,(D1)

H2(x) =− 2a+ 4b2x2e−bx2 − 2be−bx2

+
(
2ax+ 2bxe−bx2

)2
.(D2)

The constants a and b present in (22) corresponds to the respective constants present in
(1); in particular a = σ2 and b = σ2

0. Following are the graphical presentation of first seven
function from the family defined in (22).
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Figure 8. Graph of Hn(x) for n = 0, 1, 2 with a = .091 & b = 0.81.



16 HIMANSHU SINGH

−
2.5

−
2

−
1.5

−
1

−
0.5

0
0.5

1
1.5

2
2.5

−
350

−
300

−
250

−
200

−
150

−
100

−
50 0 50

100

150

200

250

x−
values

Hn(x)
H

3 (x
)

H
4 (x

)
H

5 (x
)

H
6 (x

)

−
350

−
300

−
250

−
200

−
150

−
100

−
50

0
50

100
150

200
250

Figure 9. Graph of Hn(x) for n = 3, 4, 5, 6 with a = .091 & b = 0.81.
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Following Table 1 is the compilation of the results documented for the various experi-
ments we discussed so far.

Table 1. Compilation of results

AI Learning Architecture Mathematical

Function

Figure

Ref.

Minimum

Error

Misclass.

%

Accuracy

%

Kernel Regression GRBF Figure 1 0.0023 - -
Kernel Regression GGRBF Figure 1 9.6913×

10−4
- -

Kernel Regression GRBF Figure 2 0.0010 - -
Kernel Regression GGRBF Figure 2 4.2882×

10−4
- -

Support Vector Machine GRBF Figure 3 - 5.75 94.25
Support Vector Machine Sigmoid Figure 3 - 4.5 95.5
Support Vector Machine GGRBF Figure 3 - 3.75 96.25

Activation Function Neural Network αReLU Figure 4 - 5.24 94.76
Activation Function Neural Network GGRBF Figure 4 - 2.26 97.74

Deep Convolutional Neural Network GGRBF Figure 5 - 3.67 96.33
Deep Convolutional Neural Network αReLU Figure 6 - 8.13 91.87

Future Direction 5.3. Having stated that, we are still in the void knowledge for eigen-
values of the GGRBF Kernel. Additionally, we still need to investigate whether the function
introduced in (22) are orthonormal in the sense as the traditional Hermite polynomials are.
Therefore, it will be interesting to understand the analysis of the function given in (22).
5.2. Operator Theory Analysis for Data-Driven Problems. Modern data-driven prob-
lems arising in the filed of dynamical systems are captured by the Liouville Operators
[tKGJ22], Liouville Weighted Composition Operators [Sin23b, Chapter 2] or Koopman Op-
erators [WKR15] acting over the underlying Hilbert spaces. The work-horse algorithm in
the direction of reduced order modelling (ROM) techniques is Dynamic Mode Decomposition
(DMD) [Sch10] which aims to determine the spatio-temporal coherent structures of high-
dimensional time-series data is executed by extracting the eigen-observables of the afore-
mentioned operators over the underlying RKHS.

These RKHS are Bergman-Seigal-Fock Space [Zhu12] which is generated by the exponential
dot product kernel. The L2− measure for this RKHS is (normalized) Gaussian measure
(σ2/π)

d
e−σ2|z|2dVCd(z). Following are the results from the DMD experiment for the vorticity

of the fluid flow across the cylinder when the chosen kernel was the GRBF Kernel.
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Figure 10. Original DMD Experiment for the fluid flow across the cylinder.

Figure 11. 199th-Liouville Mode (no noise) via the GGRBF Kernel for the
fluid flow across the cylinder.

Figure 12. 199th-Liouville Mode (noise) via the GRBF Kernel for the fluid
flow across the cylinder.

Clearly, DMD results by GGRBF in Figure 11 contains visibly-no-noise as compared to
results obtain by GRBF in Figure 12.
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Future Direction 5.4. We understand the action of Koopman Operators (or composition
operators) over the Bergman-Seigal-Fock Space due to the investigation performed by Car-
swell, MacCluer and Schuster in [CMS03]. On the other hand, [Sin23b, Theorem 2.25,
Chapter 2] demonstrates the provable convergence phenomena for dynamical systems by the
Liouville weighted composition operators over the Bergman-Seigal-Fock Space. It will be in-
teresting to carry-out the similar operator theoretic investigation over the RKHS introduced
in (9).
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7. MATLAB Script

7.1. Neural Net Layer of GGRBF. In order to execute experiments which employs the
neural net layer of activation function as GGRBF, we have to construct it from the scratch.
In that regards, following is the MATLAB script for the construction of custom neural net layer
for the GGRBF.

1 classdef ggrbf < nnet.layer.Layer
2 % Custom GGRBF layer.
3
4 properties (Learnable)
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5 % Layer learnable parameters.
6 % Scaling coefficients.
7 Alpha
8 Beta
9 end

10
11 methods
12 function layer = ggrbf(numChannels , name)
13
14
15 % Set layer name.
16 layer.Name = name;
17
18
19 % Initialize scaling coefficient.
20 layer.Alpha = rand([1 1 numChannels]);
21 layer.Beta = rand([1 1 numChannels]);
22 end
23
24 function Z = predict(layer , X)
25 % Z = predict(layer , X) forwards the input data X through

the layer and outputs the result Z.
26 Z=exp(-(layer.Alpha).^(-2).*X.*X).*exp(exp(-(layer.

Beta).^(-2).*X.*X)-1);
27 end
28 end
29 end
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