
Process-Oriented Metrics for Software Architecture Changeability

Nary Subramanian Lawrence Chung
Dept. of Computer Engineering Dept. of Computer Science

Hofstra University University of Texas at Dallas

Hempstead, NY 11549 Richardson, TX 75081

Abstract
Changeability is an important non-functional requirement

(NFR) for software systems and evaluation of software

changeability will be helpful for software practitioners.

Briefly stated, changeability is the ease with which

software system can be changed or modified. It is widely

accepted that NFRs such as changeability should be

incorporated in the architectural stage of software

development itself to maximize the changeability of the

system. The paper proposes the framework called the

Process-Oriented Metrics for Software Architecture

Changeability (POMSAC) that helps generate

changeability metrics for software architectures during

the process of architecture development. POMSAC helps

generate intuitive metrics for changeability and traces the

metrics to the requirements for which the architecture

exists in the first place. We present an example

metrification scheme – a single-value (SV) metrification

scheme- that meets the guidelines of POMSAC, and apply

the SV scheme to a practical banking system. This

application illustrates the advantages of the process-

oriented approach.

Keywords

Non-Functional Requirements, Changeability, Software

Architecture, Metrics

1. Introduction
Changeability is an important non-functional requirement

(NFR) for software systems [1, 2, and 3] and evaluation

of software/system changeability will be helpful for

practitioners in both the industry and academia. Briefly

stated, changeability is the ease with which a software

system can be changed or modified. It is widely believed

that NFRs such as changeability should be incorporated

into a software system at the software architecture

development stage itself. Therefore, assessment of

architectural changeability will help software developers

to confirm that the software being developed meets

changeability requirements and make corrections, if

needed. Several changeability measures have been

proposed. A category of changes called “atomic changes”

that addresses simple changes to an object-oriented

system has been dealt with in [1] and a set of measures

proposed to deal with these changes – these measures are

NOC* (number of children in sub-tree), CBO_NA

(coupling between objects but not with ancestors),

CBO_IUB (coupling between objects that consists of

classes using target class), and CBO_U (coupling between

objects that consists of classes used by the target class).

Changeability number (CN) has been proposed in [2] to

measure changeability of software design, and a formula

is given for measuring CN as CN = (Domain Classes

Number – Simplify Classes Number)/2. In [3] a scale in

terms of time spent in maintaining (assuming

maintenance is related to software changes) the software

is proposed, while in [4] a measure for extendability

(assuming again, that changeability is related to

extendability) as number of additions to the existing

system is proposed. However, the following drawbacks

may be pointed out in most of the metrics schemes for

software changeability:

1. the definition of changeability is not universally

acceptable: most schemes assume a definition of

changeability which may not satisfy all constituents –

different organizations or even different projects

within the same organization may view changeability

differently

2. the metrics are not intuitive: a formula is proposed

by there is no justification as to why the formula

calculates software changeability metrics (reasoning

for the formula is usually there but the reasoning

often does not trace the formula to the changeability

requirements)

3. the metrics are not process-oriented: most

changeability metrics calculate the changeability of

the end product; they do not help in evaluating

changeability during the development of the product

– calculation of metrics during the process of

software development will help the software

development organization to keep track of how

changeability requirements are affected by

architectural changes.

In this paper we propose a new way to evaluate

software changeability metrics – the process-oriented

metrics that overcomes the drawbacks mentioned earlier.

In order to calculate the software changeability metrics

during the process of software architecture development,

we want to be able to represent and reason about

changeability requirements “during” the development of a

changeable system, and the NFR Framework [5, 6] is a

goal-oriented framework which offers the needed

concepts and techniques. This Framework is used to

develop the POMSAC (Process-Oriented Metrics for

Software Architecture Changeability) Framework that

helps to generate process-oriented changeability metrics

for software architectures. The process instituted by the

POMSAC Framework is given below:

1. Develop a metrification scheme satisfying the

guidelines of the POMSAC Framework – these

guidelines are given in the next section.

2. Develop the Softgoal Interdependency Graph (SIG)

for the NFR changeability for the domain of interest –

this decomposition defines changeability for that

domain and is discussed in a later section.

3. Evaluate the extent to which architectures satisfice

(this is a concept of the NFR Framework which means

satisfaction within limits and not absolutely).

4. Apply the metrification scheme chosen in step 1 and

determine the changeability metrics.

The application of the POMSAC process will be

described in subsequent sections. In order to illustrate the

use of POMSAC, we have applied it to a bank loan

system that meets the requirements of the Barclay Bank

Code of Business [7, 8]. Further discussion on the

application of the NFR Framework to the design of the

bank loan system can be seen in [9]. In this paper we

consider the two architectures of the bank loan system to

measure their changeability using POMSAC. POMSAC is

similar to POMSAA (process-oriented metrics for

software architecture adaptability) [10] and POMSAE

(process-oriented metrics for software architecture

evolvability) [11] (the reason for separate frameworks for

dealing with adaptability, evolvability and changeability

is clarified in Section 2). This application of POMSAC

will also highlight its advantages compared to other

metrics for changeability.

2. The POMSAC Framework
The POMSAC Framework consists of six major

components: a set of softgoals for representing NFRs,

design components and claims, a set of contribution types

for relating softgoals to other softgoals, a set of methods

for refining softgoals into other softgoals, a set of

correlation rules for inferring potential interactions

among softgoals, a labeling procedure which determines

the degree to which a design component satisfices a

softgoal, and a set of metrification schemes to map labels

to numbers. The partial ontology of the POMSAC

Framework is given in Figure 1.

1. Softgoals can be of several types – the NFR softgoals

(depicted by a cloud), the design softgoal (depicted by a

dark cloud), and the claim softgoal (depicted by a dotted

cloud). The design softgoal represents a design

component, while a claim softgoal represents a claim (for

any item of the Framework).

2. Contribution types connect various softgoals – the links

may connect several softgoals to one softgoal in an AND-

decomposition (depicted by single arc) or in an OR-

decomposition (depicted by double arc).

3. Methods are ways to refine or decompose one softgoal

into offspring softgoals for purposes of clarity and

achievement of better designs. The softgoals are

changeability related.

4. Correlation rules help determine the interactions

between different changeability-related NFRs for a design

component.

5. Labels indicate the degree to which their associated

softgoal (or links) are satisficed – the various satisificing

degrees are given in Figure 1.

6. Metrification schemes map qualitative labels into

quantitative scores for a given architectural design. Labels

of NFR softgoals, design softgoals, claim softgoals and

links, in some combination (either only one of these, any

two of these, any three of these or all of these), may be

converted to numbers. There are several different

metrification schemes, including: 6a) Max and Min

Values: In this scheme the max and min values are

computed for the labels; 6b) Single Values: Here one

value is computed for the labels; 6c) Probabilistic: Here

probabilities are computed for the labels. The

metrification scheme guidelines are given in the next

section.

 Elements 3 and 4 above necessitate a separate

framework for dealing with changeability: POMSAC has

the knowledge of methods and correlation rules relating to

the NFR changeability, while POMSAA [10] and

POMSAE [11] have a knowledge base of methods and

correlation rules that relate to adaptability and

evolvability, respectively.

!

NFR Softgoal
Design (or Operationalizing)

Softgoal
Claim Softgoal

Strongly Positively Satisficing or

MAKE Contribution
Positively Satisficing or

HELP Contribution

Negatively Satisficing or

HURT Contribution

Strongly Negatively Satisficing or

BREAK Contribution

AND Contribution OR Contribution Criticality
Null Satisficing or

EQUAL Contribution

++ +

- --

Figure 1. The Ontology (partial) of the POMSAC Framework

2.1 Guidelines for Metrification Schemes

Any metrification scheme M converts labels of Step 5

above into metrics. This conversion is accomplished using

the guidelines of Figure 2.

Figure 2. Guidelines for Metrification Schemes

In Figure 1, guidelines M1, M2, M3 state the rules for

metrification of an element of the framework: thus M1

says that the label of leaf softgoals gets converted into a

metric, M2 says that the label of a contribution converts

into the metric for the contribution; and M3 says that the

criticality gets converted into the metric for criticality –

however, since criticalities can be assigned to two

elements of the framework, the softgoal and the

contribution, M3 is broken into two parts: M3A applies to

the criticality of the softgoal while M3B applies to the

criticality of the contribution. M4 states that for any leaf

softgoal, the metric of its label, the metric of its criticality,

the metric of its contribution to its parent, and the metric

of its contribution‟s criticality together form the metric for

the individual contribution of that leaf softgoal. M5 says

that the metric of all individual child softgoal

contributions result in the metric for the parent softgoal.

M6 applies to contributions that have children (for

example, in the form of claim softgoals) and states that

the metric of the parent contribution is computed from the

metric of the contributions of all child softgoals of that

contribution. In applying M2 the following ordering

among the contributions should be maintained:

 MAKE > HELP > HURT > BREAK

where “>” means “stronger positive satisficing”.

2.2 Decomposition of the NFR
Changeability – the SIG

The second step in the POMSAC process (given in the

Introduction) is the development of the Softgoal

Interdependency Graph (or SIG). The SIG first

decomposes the NFR changeability for the domain of

interest – here bank loan system – this decomposition

defines changeability for that domain. Then the extent to

which the architectures satisfice the various NFRs are

evaluated – this process captures traceability between

architectures and their changeability requirements. Figure

3 shows the decomposition of changeability for the bank

loan system. Each cloud in Figure 3 is a softgoal in the

NFR Framework and each softgoal is named using the

convention Type[Topic1, Topic2,…], where Type is a

non-functional aspect (e.g., changeability) and Topic is

the system to which Type applies (e.g., bank loan system),

and the decomposition can take place along Type or

Topic. In Figure 3 the bank loan policies [7, 8] have been

used to guide the decomposition; thus the NFR softgoal of

interest, viz., Changeability[Architecture, Bank Loan

System] is AND-decomposed (indicated by the single arc)

into three child softgoals: Changeability[Architecture,

NFR] (meaning changeability of non-functional

requirements of architecture), Changeability[Architecture,

FR] (meaning changeability of functional requirements of

architecture), and Changeability[Architecture, System

Workload] (meaning changeability of architecture to

accommodate varying system workloads). AND-

decomposition means that all children must be satisficed

in order for the parent to the satisficed. The NFR softgoal

Changeability[Architecture, NFR] is AND-decomposed

into three softgoals – Accuracy[Update, Statements]

(meaning the statements that are updated should be

accurate), Informativness[Update, Statements] (meaning

the statements that are updated should be informative),

and Time[Update, Base Rate] (meaning the base rate for

the loans should be updated in a timely fashion upon any

changes). The NFR softgoal Time[Update, Base Rate] is

considered critical and is indicated as such by the „!‟ mark

next to it. The NFR softgoal Changeability[FR] is AND-

decomposed into Changeability[Base Rate] (meaning

accommodation of changing base rates) and
Changeability[Statement] (meaning accommodation of

changing statements including format and content

changes), and both of these softgoals are marked critical

(by the „!‟ symbol). The NFR softgoal

Changeability[Architecture, System Workload] is OR-

decomposed (indicated by the double arc) into softgoals

Simultaneity[Processing Customer Statements] (meaning

customer statements are processed simultaneously) and

Sequentiality[Processing Customer Statements] (meaning

customer statements are processed sequentially); OR-

decomposition means satisficing of either child satisfices

the parent.

M1: label(leaf softgoal) metric(leaf softgoal)

M2: label(contribution) metric(contribution)

M3A: criticality(softgoal) metric(criticality(softgoal))

M3B: criticality(contribution) metric(criticality(contribution))

M4: {metric(leaf softgoal),

 metric(criticality(leaf softgoal)),

 metric (contribution),

 metric(criticality (contribution))}

metric(individual

 contribution of

 leaf softgoal)

M5: {metric_i(individual

 contribution of child

softgoal_i)}

metric(parent softgoal)

M6: {metric_i(individual

 contribution of child

softgoal_i)}

metric(parent contribution)

Changeability[Architecture, Bank Loan System]

Changeability[Architecture,

NFR]

Changeability[Architecture, FR]
Changeability

[Architecture,

 Workload]

Accuracy

[Update,

Statements]

Informativeness

[Update,

Statements]

Time

[Update,

Base Rate]

!

Changeability

[Base Rate]

Changeability

[Statement]

Simultaneity

[Processing

Customer

Statements]

Sequentiality

[Processing

Customer

Statements]

! !

Architecture A1

(StoreAllDataSeparatelyForEachClient)

Architecture A2

(StorePertinentDataSeparatelyForEachClient)

C1

C3

C1: Since all data are stored separately common data (like base rate)

 may not have been updated for all customers - so accuracy

 is suspect, and it takes more time as well.

C2: Since all customers' data is stored at a separate place, updating

 statements or changing statements' format is easy.

C3: Since same data need not be accessed for different clients several

 clients's data can be processed simultaneously from many

 locations.

C2
C4

C5

C6

Claims:

C4: Since pertinent data are stored separately accuracy of updates,

 timeliness of base rate update and changeability of base rates

 are all easy.

C5: Updating statements requires more than one access of the

 data base - so informativeness is suspect and is certainly

 tougher to change statement format.

C6: Since multiple data base access are required for each client

 simultaneous processing is affected.

++ ++
++

++

++

++ ++

++

++

++

++

++
++

++

++
++ ++ ++

++

++

++

+

+ +

--
-- --

Figure 3. The Softgoal Interdependency Graph for POMSAC

Database

BackEnd

User Interface

Transaction Validator

Server

Client
Transaction Processor

Legend:

Procedure Call

Remote Procedure Call

Figure 4. Architecture for the Bank Loan System

3. Application of the POMSAC
Framework
In this section we will apply the POMSAC Framework to

the bank loan system. However, we first need the

architectures for the bank loan system and the

architectures are discussed next.

3.1 Architectures for the Bank-Loan System

Software architectures have several constituents:

components, connections, patterns, constraints, styles, and

rationale [12, 13]. We consider two architectures A1 and

A2 for the bank loan system – both have client-server

style, the constraints on both are that the response time

should be fast, rationale for choosing them is

changeability, the connections are procedure calls and

remote procedure calls, while the pattern (the repeating

motif) is database access for almost all transactions. The

main difference between A1 and A2 is that A1 stores data

for each customer separately on the server (we can call

A1 as StoreAllDataSeparatelyForEachClient), while A2

stores data common to all customers (for example, base

rate of loans) at one place on the server and only data

unique to a customer separately on the server (we can call

A2 as StorePertinentDataSeparatelyForEachClient). The

component (depicted by boxes) and connection (depicted

by arrows) diagram for the two architectures are given in

Figure 4. The database resides on the server; on the client

side there is the user interface which is accessed by the

bank loan officers, the transaction authenticator that

authenticates transactions, transaction processor that

processes authenticated transactions and the back end that

includes the communication with the server. As can be

seen both the architectures are the same at a high level of

abstraction – only their functionality is different which

may be localized in any one or more of the components

on the client or the server. Thus by simply looking at the

architecture it is almost impossible to decide which is

more changeable.

3.2 Sample Single-Value Metrification
Scheme
In order to apply the POMSAC Framework we need a

metrification scheme satisfying the guidelines of Figure 2.

While several different schemes are possible, we provide

a sample single-value metrification scheme in Figure 5.

This scheme assumes that the metrics are between +1 and

-1. Thus the softgoal metrics rules M1.1 and M1.2

allocate a metric of +1 for satisficed softgoals and a

metric of -1 for denied softgoals. The rule M2 allocate

metrics for contribution between +1 and -1 depending on

the contribution type (here it is assumed that the

contributions are themselves satisficed – if not the

contributions are given a metric of 0). The M3 rules give

the metrics for the criticalities of a softgoal and a

contribution and they can range between 0 and 1. M4

gives the formula for computing the metric propagated by

a child softgoal to its parent. M5 gives the rules for

combining propagated values from multiple children for

AND, OR, and for leaf NFR softgoals. M6 gives the

method to compute metrics for a contribution that has

children.

3.3 Calculation of Metrics Using the Sample
SV Scheme
The complete SIG for architectures A1 and A2 is shown

in Figure 3 – the justifications for the claims are depicted

by the claim softgoals (labeled C1 through C6) and the

claims are also given in that figure. Figure 6 shows the

step-wise application of the SV scheme to architecture

A1. First metrics M1 and M3 are assigned to the design

softgoal (here the design softgoal A1 represents the entire

architecture A1 – this need not be the case; individual

constituents of architecture

Figure 5. Sample Single-Value Metrification Scheme

1. M1 (softgoal metrics)

M1.1: A satisficed softgoal gets a metric of 1

M1.2: A denied softgoal gets a metric -1

M1.3: A softgoal with any uncertainty gets a metric between 1 and -1

2. M2: (contribution metrics)

 A contribution's metric (CM) is computed as follows:

 MAKE = +1, HELP = +0.5, HURT = -0.5, BREAK = -1, EQUAL = 1

3. M3: (criticality metrics)

M3A: A softgoal's criticality is assigned a metric between 0 and 1

M3B: A contribution's criticality is assigned a metric between 0 and 1

4. M4: The metric propagated (C) by a softgoal to its parent is given by:

 (metric of softgoal + criticality of softgoal) * (metric of contribution + criticality of contribution)

5. M5: For each parent softgoal in the SIG:

M5.1: if the children are all connected by AND, the metric of the parent is

 the minimum of the metrics propagated by all its children.

M5.2: if the children are all connected by OR, the metric of the parent is

 the maximum of the metrics propagated by all its children.

M5.3: the metric of a parent NFR softgoal which is also a leaf (i.e., has only operationalizing

softgoals connected to it) is given below where Ci is the metric propagated by each child:

 parent softgoal metric = {Ci} if 1 {Ci} -1

 parent softgoal metric = 1 if {Ci}> 1

 parent softgoal metric = -1 if {Ci}< -1

6. M6: Metric of a parent contribution is CM+the minimum of its children's propagated values.

A1 may be treated as separate design softgoals, but we

have given priority to simplicity) and to the claim softgoal

(Figure 6a); then M6 and M4 are applied to the

contribution of the claim softgoal (Figure 6b). Then M4 is

used to compute the metric propagated by the design

softgoal to each of the parent NFR softgoals considering

criticality (Figure 6c). Then M5 is used to progressively

propagate the metrics up the SIG till the metrics for the

main NFR softgoal, viz., Changeability[Architecture,

Bank Loan System] are calculated (Figure 6d). Thus

based on POMSAC, architecture A1 gets a changeability

metric of 0.5, while architecture A2 gets (by a similar

process) a changeability metric of 1.0.

3.4 Discussion of POMSAC Metrics
The process-oriented metrics easily overcome the three

main drawbacks of the currently used metrics mentioned

in the Introduction. Firstly, almost any definition of

changeability is accommodated in POMSAC since the

definition is captured in the NFR softgoal decomposition

for the domain. Different decompositions capture

different definitions. Secondly, the metrics are justified by

the requirements – thus when architecture A1 obtained a

metric of 0.5, we know exactly why – it is because of the

changeability requirements, the contributions that A1

makes to the various NFR softgoals, and the metrification

scheme used. Any changes in one of these factors could

affect the metric calculated but again we know why.

Finally, the process-oriented metrics are process-oriented

– they help (re-)calculate metrics during the process of

architecture development; thus metrics for partial

architectures may be evaluated and can be used to guide

the development process – any modifications to the

architectures that affect changeability metrics may be

scrutinized for omissions/commissions. This also helps

analyze reasons for strengths/weaknesses of architectures.

Thus POMSAC provides a useful alternative approach to

calculating software architecture changeability metrics.

4. Conclusion
In this paper we have presented the process-oriented

metrics for software architecture changeability

(POMSAC). POMSAC differs from other techniques for

measuring architectural changeability in the following

ways:

1. it is process-oriented: architectural changeability

metrics can be computed during the process of

software development incrementally as additions and

changes are being made

2. provides a means for representing software artifacts

3. provides a method to capture design rationale – this is

very important since these rationales help in making

change decisions (and any change decision can be

recorded as well)

4. traces the metrics to the changeability requirements

5. maintains an historical record – this will help in any

change decisions.

The POMSAC Framework is based on the NFR

Framework [5, 6] and provides a set of guidelines that any

metrification scheme for process-orientation should

satisfy. In order to illustrate POMSAC we present a

sample single-value metrification scheme that satisfies the

guidelines. The single-value metrification scheme is

applied to two architectures for a bank loan system and

the changeability metrics for the two architectures are

computed. The process illustrates the advantages of the

POMSAC Framework over other changeability metrics in

the literature.

 There is still more work to be done – POMSAC

has to be tested using a deeper NFR-decomposition

scheme, has to be tested on complex architectures, needs

to be tested on different architectural styles, and for

different architectural views such as logical, physical,

deployment, etc
1
. Other possible avenues for further

research include automated tool support for applying

POMSAC, studying scalability of POMSAC possibly

with the aid of automated tool, and applying of POMSAC

to other software systems for further feedback on the

strengths and weaknesses of the framework. However, it

is our opinion that our preliminary studies show that the

POMSAC Framework will be useful to software

organizations in practice.

5. References
[1] M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman and

G. Saint-Denis, “Design Properties and Object-Oriented

Software Changeability”, Proceedings of the Conference

on Software Maintenance and Reengineering, Feb-March,

2000, Zurich, IEEE Computer Society, pp. 45-54.

[2] J. Garzas, M. Piattini, “Analyzability and Changeability in

Design Patterns”, The Second Latin American Conference

on Pattern Languages and Programming, Special Session

on Software Pattern Applications, August 2002, Brazil.

[3] N. E. Fenton, “Software Metrics – A Rigorous Approach”,

Chapman & Hall, London, 1991.

[4] T. Gilb, “Principles of Software Engineering

Management”, Addison Wesley, England, 1988.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-

Functional Requirements in Software Engineering, Kluwer

Academic Publishers, Boston, 2000.

[6] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and

Using Nonfunctional Requirements: A Process-Oriented

Approach”, IEEE Transactions on Software Engineering,

Vol. 18, No. 6, June 1992, pp. 483-497.

[7] Barclays Bank PLC, The Barclays Code of Business

Banking, London, England, effective 31st Jan. 1992.

[8] Barclays Bank PLC, The Barclays Code of Business

Banking, London, England, May 1993.

1
 We thank the reviewers of the paper for pointing out

possible improvements for POMSAC‟s application.

Changeability[Architecture, Bank Loan System]

Changeability[Architecture,

NFR]

Changeability[Architecture, FR]
Changeability

[Architecture,

 Workload]

Accuracy

[Update,

Statements]

Informativeness

[Update,

Statements]

Time

[Update,

Base Rate]

!

Changeability

[Base Rate]

Changeability

[Statement]

Simultaneity

[Processing

Customer

Statements]

Sequentiality

[Processing

Customer

Statements]

! !

1

Architecture A1

(StoreAllDataSeparatelyForEachClient)

1

1

1

0.5

1
-1

-1
1

1
1

1
1

1

1
1

1 1
Step1: By M1.1 and M2 of SV scheme all claim softgoals

 and design softgoals (assumed satisficed) and all

 contributions are given metrics. All noncritical

softgoals and contributions are assigned a criticality

 value of 0.

Changeability[Architecture, Bank Loan System]

Changeability[Architecture,

NFR]

Changeability[Architecture, FR]
Changeability

[Architecture,

 Workload]

Accuracy

[Update,

Statements]

Informativeness

[Update,

Statements]

Time

[Update,

Base Rate]

!

Changeability

[Base Rate]

Changeability

[Statement]

Simultaneity

[Processing

Customer

Statements]

Sequentiality

[Processing

Customer

Statements]

! !

1

Architecture A1

(StoreAllDataSeparatelyForEachClient)

1

1

1

1.5

2
0

0
2

2
2

Step 2: By M4 all claim softgoals (assuming

criticalities of 0) contribute a value of 1

 to their parent contributions, and by M6

 the parent contributions' metrics are

 by 1.

(a) (b)

Changeability[Architecture, Bank Loan System]

Changeability[Architecture,

NFR]

Changeability[Architecture, FR]
Changeability

[Architecture,

 Workload]

1 1 0 0 1 1 1

Accuracy

[Update,

Statements]

Informativeness

[Update,

Statements]

Time

[Update,

Base Rate]

!

Changeability

[Base Rate]

Changeability

[Statement]

Simultaneity

[Processing

Customer

Statements]

Sequentiality

[Processing

Customer

Statements]

! !

1

Architecture A1

(StoreAllDataSeparatelyForEachClient)

1

1

1

1.5

2
0

0
2

2
2

Step 3: M4 is applied to propagate metrics to

 the leaf NFR softgoals.

 By M3A criticality of critical softgoals is assigned

 a metric of 0.5

(c)

0.5 Changeability[Architecture, Bank Loan System]

0.5
0.5 1Changeability[Architecture,

NFR]

Changeability[Architecture, FR]
Changeability

[Architecture,

 Workload]

1 1 0 0 1 1 1

Accuracy

[Update,

Statements]

Informativeness

[Update,

Statements]

Time

[Update,

Base Rate]

!

Changeability

[Base Rate]

Changeability

[Statement]

Simultaneity

[Processing

Customer

Statements]

Sequentiality

[Processing

Customer

Statements]

! !

1

Architecture A1

(StoreAllDataSeparatelyForEachClient)

1

1

1

Step 4: By M4, M5.2 and M5.2, the

 parent NFR softgoals get

 the minimum (for AND) and

 the maximum (for OR).

0.5 0.5 0.5

(d)

1.5 is set to 1 by
M5.3

2 is set to 1 by
M5.3

2 is set to 1 by
M5.3

Metric propagated

upward (by M4) =

(0.5 + 0)*(1+0)= 0.5

Metric propagated

upward (by M4) = (1

+ 0)*(1+0)= 1

Metric (by
M5.1) = min(1,1,0.5)

Metric (by
M5.1) = min(0.5, 1)

Metric (by
M5.1) = min(1,1)

Metric (by M5.1) =

min(0.5, 0.5, 1)

-- --

++ ++
++

++ ++

++ ++ ++ ++

++
++

+

++ ++
++

++

++

++

++
++

++ ++ ++

11

1

1 1 1

1

--
--

+

1
1

1

1
1

1 1

1
1

1

1
1

11

2

2

2
00

2

1.5

++

++

++

++ ++

++

++

++

++

++
++

+ --
--

-- -- ++++

++ ++
++

++ ++

++ ++

++

++

+

Figure 6. Step-by-step Propagation of POMSAC Metrics up the SIG

[9] L. Chung, B. A. Nixon, and E. Yu, “Dealing with Change:

An Approach Using Non-Functional Requirements”,

Requirements Engineering Journal, Volume 1, Number 4,

January 1997.

[10] L. Chung and N. Subramanian, “Process-Oriented Metrics

for Software Architecture Adaptability”, Proceedings of the

International Symposium on Requirements Engineering,

Toronto, Canada, Aug-Sep., 2001, pp. 310-311.

[11] N. Subramanian and L. Chung, “Process-Oriented Metrics

for Software Architecture Evolvability”, Proceedings of the

International Workshop on Principles of Software

Evolution, IEEE Computer Society, Helsinki, Finland,

September, 2003, pp. 65 -70.

[12] M. Shaw, and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice Hall,

1996.

[13] L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice, SEI Series in Software

Engineering, Addison-Wesley, 1998.

