The University of Texas at Tyler Department of Electrical Engineering

EENG 3302: Digital Systems Design (required)

Syllabus

\sim	- · · ·	
('ataloo	Description:	•
Catalou		

EENG 3302: Digital Systems Design

Boolean algebra, logic gates; number systems and codes; combinational logic; sequential logic; design of logic circuits; analog-digital interface; memory devices. Two hours of lecture and one three-hour lab per week.

Prerequis	sites: MATH 2	2413 Calculus	<u> </u>		
Credits:	3 (2 hours	s lecture, 1	hours laboratory per week)	
Text(s):			damentals, 11 th ed. Prentice 13: 9780132737968	Hall, 2015	
Additiona	l Material: NI N	Aultisim Softwa	are		
Course C	oordinator: F	atemeh Kalant	ari, Professor		

<u>Topics Covered</u>: (paragraph of topics separated by semicolons)

Introductory Digital Concepts; Number Systems, Operations, and Codes; Logic Gates; Boolean Algebra and Logic Simplification; Karnaugh Maps; Combinational Logic; Functions of Combinational Logic; Flip-Flops and Related Devices; Counters; Shift Registers; Sequential Logic; Memory and Storage;.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

Course Learning Outcomes¹: By the end of this course students will be able to:

- 1. Explain basic digital concepts including digital vs. analog, bits, logic levels, logic operations, functions and digital waveforms [1]
- 2. Solve problems involving conversions between decimal, binary, octal and hexadecimal number systems, signed numbers, arithmetic operations, digital codes such as BCD, ASCII, parity and error detection/correction [1]
- 3. Understand the operation of basic logic gates (NOT, AND, OR, ex-OR, NAND, NOR) using truth tables, logic circuit elements, timing diagrams and implementation using fixed-function integrated circuits [3]
- 4. Formulate and solve problems using Boolean Algebra including laws, rules, DeMorgan's theorem and boolean analysis of logic circuits [1]
- 5. Construct simplified logic circuits using boolean algebra, standard forms of boolean expressions, boolean expressions from truth tables and Karnaugh maps for minimization [1]
- 6. Apply combinational logic analysis to digital systems including realization techniques, the universal property of NAND/NOR gates, implementation and testing with pulse waveform inputs [1]

- 7. Analyze the operation of combinational logic circuits including adders, comparators, decoders, encoders, code converters, multiplexers, demultiplexers, parity generators/checkers [1]
- 8. Design combinational logic circuits including look-ahead carry adders, comparators, priority encoders, I/O drivers, parity generators/checkers [3]
- 9. Demonstrate knowledge of sequential logic circuit elements like flip-flops, latches, timers and their applications [1]
- 10. Design counter circuits to meet specifications including specified number sequences [1]
- 11. Outline the types of shift register circuits including various I/O configurations, Ring and Johnson counters
- 12. Demonstrate knowledge of memory and storage including operation, types and circuits [1]
- 13. Explain a contemporary issue in the field of computer engineering [3]
- 14. Use modern engineering tools including modeling and simulation software and virtual instruments [3]
- 15. Perform laboratory experiments utilizing digital system analysis, design and implementation techniques [3]
- 16. Prepare laboratory reports that clearly communicate experimental information in a logical and scientific manner [3]

Relationship to Student Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [1-7, 9, 11, 12]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors [8, 10]
- 3. an ability to communicate effectively with a range of audiences [16]
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts [13]
- an ability to function effectively on a team whose members together provide leadership, create a
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions [14, 15]

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:		hours
Engineering Sciences and Design:	3	hours
General Education Component:		hours

Prepared By: Edited By:

Mukul Shirvaikar, Professor

Fatemeh Kalantari, Professor Fatemeh Kalantari, Professor

Date:

18 August 2019 21 April 2020 15 August 2024

22 August 2025

¹Numbers in brackets refer to method(s) used to evaluate the course learning outcome.

²Numbers in brackets refer to course learning outcome(s) that address the Program Outcome.