The University of Texas at Tyler Department of Electrical Engineering

Course: EENG 5317-040 - Power Electronics

Syllabus

\sim \cdot \cdot		
('atalaa	I locoru	ntion:
Catalog	176201	ווטווטו
<u> </u>	D 00011	:

AC-DC converters; Inverters, AC voltage controllers; DC-DC Converters; Speed torque characteristics of motors and loads; Adjustable speed drives; Introduction to HVDC. Prerequisite: EENG 4310 Electric Power Systems. Three hours of lecture per week.

Prerequisites: EENG 4310 (or equivalent)

<u>Credits:</u> 3 (3 hours lecture, 0 hours laboratory per week)

<u>Text(s):</u> M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Prentice Hall, 4th ed., 2014.

Additional Material: Instructor's Lecture Notes

Course Coordinator: Tariq Masood

<u>Topics Covered</u>: (paragraph of topics separated by semicolons)

Intro to Power Systems

Uncontrolled Rectifier Circuits

Power Quality and Transformer Utilization Factor

Energy Recovery Techniques

Full Converters (Controlled Rectifier Circuits)

Semi-Converters

Effect of Source Inductance

Inverters

AC Voltage Controllers

Characteristics of Motors and Loads

Thyristor Commutation Techniques

DC-DC Choppers

Intro to HVDC

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- Course Participation
- 8. Peer Review

<u>Course Objectives</u>¹: By the end of this course students will be able to:

- 1. Analyze uncontrolled rectifier circuits [1,4,5]
- 2. Analyze and design (conceptual) diode circuits and rectifiers [1,4,5]

- 3. Analyze and design (conceptual) single-phase controlled rectifier circuits (converters) [1,4,5]
- 4. Analyze three-phase controlled rectifier circuits [1,4,5]
- 5. Analyze AC voltage controllers and static switches [1,4,5]
- 6. Analyze DC choppers [1,4,5]
- 7. Analyze and design simple AC and DC drives controllers [1,4,5]
- 8. Analyze simple HVDC system [1]

Relationship to Program Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. Breadth and Depth: Students will be able to apply knowledge at a graduate level in two of the following areas: electronics, power systems, controls, advanced engineering. [1-8]
- 2. Modern Engineering Tools: Students will be able to use modern engineering tools for analysis and design as applied to engineering problems. [2,3]
- 3. Advanced Engineering Mathematics: Students will be able to apply principles of advanced engineering mathematics including probability and statistics to engineering. [1-8]
- Systems Design: Students will be able to apply systems design approaches including modeling and simulation of interacting sub-systems to complex engineering problems.
- Design Methods: Students will be able to demonstrate application of design methodology by comparing and evaluating solutions to engineering problems
- 6. Communication Skills: Students will demonstrate effective oral, visual and written communication skills from a technical perspective [7].

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:	0	hours
Engineering Sciences and Design:	3.0	hours
General Education Component:	0	hours

Prepared By:	Tariq Masood	<u>Date:</u>	08/22/2025
--------------	--------------	--------------	------------

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

²Numbers in brackets refer to course objective(s) that address the Program Outcome.