The University of Texas at Tyler Department of Electrical Engineering

EENG 3106.001-80630: Electronic Circuit Analysis I Lab (required)

Syllabus

Catalog Description:

Circuit applications of operational amplifiers; circuit effects of non-ideal characteristics of operational amplifiers; diode characteristics; diode circuits and applications; transistor biasing (bipolar junction transistors and field effect transistors); low frequency transistor amplifier design.

<u>Prerequis</u>	sites: El	ENG 3306 (Co-re	equisite)		
Credits:	(0	hours lecture,	1 hours laboratory per wee	∍k)	
Text(s):	None				
<u>Additiona</u>	l Material:	Laboratory Pro	cedures (provided online)		
Course C	oordinator:	Md Masud R	ana, Assistant Professor		

Topics Covered: (paragraph of topics separated by semicolons)

Generalized amplifier models and two-port networks; operational amplifier circuits (including non-ideal characteristics); semiconductor diode characteristics; diode rectifier and waveshaping circuits; MOSFET device characteristics; bipolar junction transistor characteristics; the common-emitter amplifier.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report/paper
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

Course Learning Outcomes¹: By the end of this course students will be able to:

- Calculate and measure the effects on circuit performance of non-ideal electrical characteristics of operational amplifiers.
- 2. Measure and analyze semiconductor diode V-I characteristics.
- 3. Design simple rectifier and waveshaping circuits.
- 4. Measure and analyze the V-I characteristics of enhancement-mode MOS devices.
- 5. Measure and analyze the V-I characteristics of bipolar junction transistors.
- 6. Measure the voltage gain, input impedance, and output impedance of a single-stage common-emitter amplifier and compare these to theoretical values.
- 7. Use modern engineering tools including modeling and simulation software and virtual instruments.
- 8. Utilize engineering literature such as technical manuals and product datasheets to select components to meet experimental or prototype requirements
- 9. Prepare laboratory reports that clearly communicate experimental information in a logical and scientific manner.

Relationship to Student Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

1

¹Numbers in brackets refer to method(s) used to evaluate the course learning outcome.

- 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [1,6].
- 2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors [3].
- 3. An ability to communicate effectively with a range of audiences. [9]
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions [2,4,5,7].
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies. [8].

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:		hours
Engineering Sciences and Design:	1	hours
General Education Component:		hours

Grade Replacement:

If you are repeating this course for a grade replacement, <u>you must file an intent to receive grade forgiveness with the registrar by the 12th day of class.</u> Failure to file an intent to use grade forgiveness will result in both the original and repeated grade being used to calculate your overall grade point average. A student will receive grade forgiveness (grade replacement) for only three (undergraduate student) or two (graduate student) course repeats during his/her career at UT Tyler. (2006-08 Catalog, p. 35)

David M. Beams R. J. Pieper Prabha Sundaravadivel Md Masud Rana	<u>Date:</u>	8 August 2016 20 August 2018 10 August 2019 22 August 2024	,
ING Masac Nana		ZZ August ZUZ+	!
	R. J. Pieper Prabha Sundaravadivel	R. J. Pieper Prabha Sundaravadivel	R. J. Pieper 20 August 2018 Prabha Sundaravadivel 10 August 2019

²Numbers in brackets refer to course learning outcome(s) that address the Program Outcome.