

**The University of Texas at Tyler
Department of Electrical and Computer Engineering**

CMPE 4320: Computer Architecture and Design (Required)

Syllabus

Catalog Description:

Introduction to computer architecture, RISC/CISC, processors, data path, control, ALU; pipelining, memory, cache, I/O, digital logic; micro architecture, instruction sets, addressing modes; operating systems, virtual memory, processes, assembly language.

Prerequisites: COSC 2315 Computer Organization and EENG 4307 Microprocessors and Embedded Systems Design

Credits: (**3** hours lecture, **0** hours laboratory per week)

Text(s): Patterson and Hennessy, **Computer Organization and Design, 5th ed.**, Morgan Kaufman, 2013, ISBN: 9780124077263

Additional Material: TBD

Course Coordinator: Vijayalakshmi Saravanan, Assistant Professor, Electrical and Computer Engineering

Topics Covered: (paragraph of topics separated by semicolons)

Introduction to Computer Architecture: structured computer organization, hardwired and programmed control, example computer families; Computer Systems: processors, memory organization, cache design, I/O organization; Digital Logic: circuits, memory, buses, hardware for integer and floating point operations; Microarchitecture: microprogramming, microinstructions, data path and control unit design; Instruction Set Architecture: opcodes, addressing modes, instruction formats and types; Operating Systems: virtual memory, processes; Assembly Language: macros, assemblers, linking and loading;

Evaluation Methods: (only items in dark print apply):

1. Examinations / Quizzes
2. Homework
3. Report
4. Computer Programming
5. Project
6. Presentation
7. Course Participation
8. Peer Review

Course Learning Outcomes¹: By the end of this course students will be able to:

1. Explain a contemporary issue in computer architecture referring to relevant codes and standards as appropriate [3]
2. Evaluate the performance of a computer system given the hardware specifications [1]
3. Justify the need to design multicore processors to improve computer performance [1]
4. Solve design problems at the digital logic, microarchitecture, instruction set architecture level and explain the function of each level [1]

- 5. Convert decimal numbers to IEEE floating point numbers [1]
- 6. Contrast the differences between a RISC versus CISC architecture [1]
- 7. Discuss relevant professional ethics related to the professional practice of modern technology e.g. product reliability, effect on environment, teamwork ethics etc. [3]
- 8. Recognize how the memory hierarchy (registers, cache, RAM, disk) impacts performance [1]
- 9. Outline how pipelining is used to improve processor performance [1]
- 10. Describe the architecture of a superscalar processor [1]
- 11. Describe the impact of multicore processors on society [3]
- 12. Incorporate information gained by independent learning from technical reference manuals and other sources to implement a project (write subroutines in assembly language) and enhance reports [3,4]

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

Relationship to Student Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [3-6, 8-10]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts [1, 7, 11]
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions [2]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies. [12]

²Numbers in brackets refer to course objective(s) that address the Student Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:		hours
Engineering Sciences and Design:	3	hours
General Education Component:		hours

<u>Prepared By:</u>	Mukul V. Shirvaikar	<u>Date:</u>	28 November 2022
<u>Updated By:</u>	Vijayalakshmi Saravanan	<u>Date:</u>	6 January 2026

<u>Updated By:</u>		<u>Date:</u>	
--------------------	--	--------------	--