

The University of Texas at Tyler
Department of Electrical Engineering

EENG 5353.031: Special Topics in EE (Elective)

Adaptive Filters

Syllabus

Catalog Description:

Introduction to discrete-time signal processing, Impulse response, z-transform, FIR, IIR filters, Stochastic Processes, Correlation functions and power spectral density, Wiener Filters, Introduction to gradient search algorithms, steepest-descent algorithm, LMS algorithm, Recursive Least Squares algorithm, Introduction to Noise Cancelation and Echo Cancelation.

Prerequisites: EENG 4311 – Signals and Systems, EENG 4312 – Communication Theory

Credits: (3 hours lecture)

Text(s): 1. Behrouz Farhang-Boroujeny, Adaptive Filters: Theory and Applications, 2nd Edition, ISBN: 978-1-119-97954-8

2. Simon O. Haykin, Adaptive Filter Theory, 5th Edition, ISBN: 978-0-132-67149-1

3. Saeed V. Vaseghi, Multimedia Signal Processing Theory and Applications in Speech, Music and Communications, 1st Edition, ISBN 978-0-470-06201-2.

Additional Material: Lecture Handouts, MATLAB

Course Coordinator: Ali Ghorshi, PhD

Topics Covered: (paragraph of topics separated by semicolons)

Introduction to discrete-time signal processing, Impulse response, z-transform, FIR, IIR filters, Stochastic Processes, Correlation functions and power spectral density, Wiener Filters, Introduction to gradient search algorithms, steepest-descent algorithm, LMS algorithm, Recursive Least Squares algorithm.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

Course Learning Outcomes¹: By the end of this course students will be able to:

- 1. Explain the core principles and mathematical foundations of adaptive filters.
- 2. Explain the Wiener Filter Theory: normal equations; error performance surfaces; orthogonality; minimum mean square errors.
- 3. Analyze the behavior, convergence, and stability of LMS, NLMS, RLS, and related adaptive algorithms.
- 4. Design adaptive filters for applications such as noise cancellation, system identification, and channel equalization.
- 5. Implement adaptive filtering algorithms using MATLAB or Python and evaluate their performance.
- 6. Compare adaptive algorithms in terms of convergence speed, accuracy, and computational complexity.
- 7. Apply adaptive filtering techniques to advanced problems in communications, audio/speech, or biomedical signal processing.
- 8. Present and document adaptive filter designs and results clearly in technical reports and presentations.

¹Numbers in brackets refer to method(s) used to evaluate the course learning outcome.

Relationship to Student Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

1. Apply advanced knowledge of mathematics, science, and engineering to solve complex engineering problems. [1-7]
2. Design solutions for complex engineering problems that meet specified needs. [2,3,4,6,7]
3. Communicate effectively with a range of audiences. [8]
4. Recognize ethical and professional responsibilities in engineering practice. [8]
5. Conduct experimentation and analyze data. [2-7]
6. Acquire and apply new knowledge using appropriate learning strategies. [2-7]

²Numbers in brackets refer to course learning outcome(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:		hours
Engineering Sciences and Design:	3	hours
General Education Component:		hours

Prepared By:
Edited By:

Ali Ghorshi, PhD

Date:
18 August 2019
21 April 2020
26 December 2020
01 January 2026