The University of Texas at Tyler Department of Electrical Engineering

EENG 4105 – Undergraduate Research Seminar

Syllabus

Catalog Description:

The purpose of this course is to prepare students for engineering research: literature survey, generation of hypothesis, experiment design, research methodology, analysis and interpretation of data using a set of published scientific research papers.

<u>Prerequ</u>	<u>isites:</u>							
<u>Credits</u> <u>:</u>	(1	hour meeting,	0 hours laboratory per week)				
Text(s)	No specific textbook is required. Students will do their own literature survey, design experiments, analyze data, and discuss with Dr. Tabassum during class time.							
<u>Additional</u> <u>Material:</u>			Engineering paper, scientific calculator, MATLAB, and Excel					
<u>Course</u> <u>Coordinator:</u>			Shawana Tabassum					

<u>Topics Covered</u>: (paragraph of topics separated by semicolons)

Topics emphasize the literature survey, generation of hypothesis, experiment design, research methodology, analysis and interpretation of data using a set of published scientific research papers.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

Course Objectives²: By the end of this course students will be able to:

- 1. Develop literature research skills, creative thinking, presentation and report-writing skills through a survey of the most recent biosensing platforms (e.g. Covid-19). [3,5,6]
- 2. Design and develop sensors with application ranging from healthcare to environmental monitoring. [3,5,6]

Relationship to Program Outcomes (only items in dark print apply)³: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [1,2];
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors [1,2];
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives [1]
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions [1,2];
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

<u>Prepared</u>	Shawana Tabassum	<u>Date:</u>	9 January 2024
<u>By:</u>			

²Numbers in brackets refer to method(s) used to evaluate the course objective.

³ Numbers in brackets refer to course objective(s) that address the Program Outcome.