The University of Texas at Tyler Department of Electrical Engineering

EENG 3104 Linear Circuits Analysis I Laboratory (Required)

Syllabus

Catalog Description:

Introduction to principles and operation of basic laboratory equipment; engineering report preparation; design and implementation of experiments based on DC and AC circuit theory, network theorems, time and frequency domain circuit analysis. One three-hour laboratory per week.

Prerequisites:	Co-requisite: EENG 3304
Credits:	(0 hours lecture, 1 hours laboratory per week)
••••	
Text(s): (Requiered)	 NI myDAQ Student with NI LabVIEW, NI Multisim and NI Ultiboard (Part No. 781327-01), NI Protoboard for myDAQ (Part No. NIPCB1) (http://www.studica.com/us/en/NImyDAQ)
Additional Mate	erial:
Course Coordi	nator: Hector A. Ochoa
Topics Covere	d: (paragraph of topics separated by semicolons)
analysis;	oncepts; Ohm's law; Kirchhoff's voltage and current laws; node and loop simple operational amplifier circuits; capacitance and inductance; response of RC, RL, and RLC networks.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report / Paper
- 4. Computer Programming
- 5. Project / Model
- 6. Presentation
- 7. Course Participation

<u>Course Learning Outcomes (formerly Objectives)</u>¹: By the end of this course students will be able to:

- Conduct basic laboratory experiments involving electrical circuits using laboratory test equipment such as multimeters, power supplies, signal generators, and oscilloscopes. [1]
- 2. Demonstrate the concept of Thevenin equivalent circuits in the laboratory. [3]
- 3. Demonstrate the concept of Linear superposition in the laboratory. [3]
- 4. Predict and measure the behavior of simple Operational-Amplifier Circuits. [3]
- 5. Design simple Operational-Amplifier Circuits. [1]
- 6. Predict and measure the transient and sinusoidal steady-state responses of RC, RL and RLC circuits. [3]
- 7. Prepare laboratory reports that clearly communicate experimental information in a

logical and scientific manner. [3]

- 8. Use modern engineering tools including modeling and simulation software and virtual instruments. [3]
- 9. Relate physical observations and measurements involving electrical circuits to theoretical principles. [3]
- 10. Evaluate the accuracy of physical measurements and the potential sources of error in the measurements. [3]
- 11. Use the concept of Thevenin and Norton equivalence to model unknown networks.

Relationship to Program Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering; [10]
- 2. have the ability to use modern engineering tools and techniques in the practice of electrical engineering; [1,8]
- 3. have the ability to analyze electrical circuits, devices, and systems; [2,3]
- 4. have the ability to design electrical circuits, devices, and systems to meet application requirements; [5]
- 5. have the ability to design and conduct experiments, and analyze and interpret experimental results; [4,6,9]
- 6. have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods; [11]
- 7. have effective written, visual, and oral communication skill; [7]
- 8. possess an educational background to understand the global context in which engineering is practiced, including:
 - a. knowledge of contemporary issues related to science and engineering;
 - b. the impact of engineering on society;
 - c. the role of ethics in the practice of engineering;
- 9. have the ability to contribute effectively as members of multi-disciplinary engineering teams;
- 10. have a recognition of the need for and ability to pursue continued learning throughout their professional careers;

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:	0	hours
Engineering Sciences and Design:	1	hours
General Education Component:	0	hours

Prepared By:	Hector A. Ochoa	Date:	January 8, 2015	
Modified By:				

¹Numbers in brackets refer to method(s) used to evaluate the CLO.

² Numbers in brackets refer to course learning outcomes/objective(s) that address the Program Outcome.