The University of Texas at Tyler Department of Electrical Engineering

EENG 4350.041: Special Topics in EE

Digital Signal Processing

Syllabus

Catalog Description:

Introduction to modern digital processing. Basic building blocks, the basic math (Z-Transforms, Fourier Transforms, Fast Fourier Transforms), deterministic processing, FIR and IIR filters, polyphase filtering, introduction to statistical filtering, basic power spectral density.

Prerequisites: EENG 4311 Signals and Systems

<u>Credits:</u> (3 hours lecture, 0 hours laboratory per week)

<u>Text(s):</u> Oppenheim, Schafer. Discrete-Time Signal Processing, 2e. Prentice Hall,

1999.

Additional Material: MATLAB, Class Notes

Course Coordinator: Ali Ghorshi, PhD

Topics Covered: (paragraph of topics separated by semicolons)

Discrete-Time signals and systems; Z transform; Sampling of Continuous time systems; Transform analysis of linear time-invariant systems; Filter design techniques; the DFT and FFT algorithms; Fourier analysis of signals using the DFT; DSP applications.

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

Course Objectives¹: By the end of this course students will be able to:

- 1. Explain the fundamentals of digital signal processing including sampling, frequency analysis, and filtering. [1, 2]
- 2. Describe the applications of DSP. [1, 2]
- 3. Implement and evaluate basic DSP applications using MATLAB. [2, 3, 4]
- 4. Determine the performance of DSP algorithms implemented using computer hardware. [1, 2, 4]
- 5. Design digital signal processing structures to provide solutions to practical engineering problems. [1, 2, 3, 4]

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Student Outcomes</u> ²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics. [1, 2]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. [5]
- an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions. [3]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies. [4]

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:		hours
Engineering Sciences and Design:	3	hours
General Education Component:		hours

Prepared By:	Mark Humphries, Adjunct Professor	Date:	13 January 2008
Modified By:	Hector A. Ochoa, Assistant Professor		3 June 2009
	Ali Ghorshi, PhD		13 January 2019
			6 January 2020

²Numbers in brackets refer to course objective(s) that address the Program Outcome.