

Department of Mechanical Engineering

Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

<u>MENG 5343 – Advanced Heat Transfer</u> <u>Course Syllabus</u>

G	G 1 2022		
Semester / Year	Spring 2023		
Catalog Description	Multidimensional steady and transient heat conduction; forced and		
	natural convection; radiation exchange		
Prerequisites	MENG 3316 (Heat Transfer)		
Section Number	030 and 040		
Instructor Name	Hayder Abdul-Razzak, PhD, PE		
Contact Information	832.439.7080; habdulrazzak@uttyler.edu		
Class Type / Instruction	Face-to-face and Zoom		
Mode / Location			
Class Time	5:00 p.m. – 7:45 R		
Office Hours	5:00 p.m. – 6:30 p.m. MW		
	Appointments may be scheduled in addition to regularly scheduled office		
	hours.		
No. of Credits	3		
Required Textbook	Heat Transfer, 1 st edition, by Nellis and Klein, Cambridge University		
_	Press, 2009 (ISBN 978-1-107-67137-9)		
Optional References	FE Supplied Reference Handbook, NCEES (National Council of		
Optional References	Examiners for Engineering and Surveying)		
Additional Rules and	Examiners for Engineering and Surveying)		
Requirements			
Evaluation Method	Exercises 20%/ Paper (Project) 20%/ Exams 30%/ Final Exam 30%		
Grading Policy / Scale	A = 90, $B = 80$, $C = 70$, $D = 60$, $F < 60$, $F = 50$ % or less on		
Grading Folicy / Scale	the Final Exam		
Important Events / Dates			
Important Events / Bates	Census date: Monday, January 23		
	Last Day to Withdraw date: Monday, March 23 Final Exam date: TBD		
Attendance / Makeup	ATTENDANCE. Regular attendance is required. In case you have to		
policy / other rules	miss a class, it is your responsibility to keep up with the class work and		
poncy / other rules	be informed of all announcements made in the class.		
	be informed of an announcements made in the class.		
	THERE WILL BE NO MAKE-UP EXAMS. The percentage of any		
	exam missed by a student will be added to his/her final comprehensive		
	exam only if prior approval is granted. The student is responsible to		
	contact the instructor at least a week before the scheduled exam date to		
	get an excuse from the exam. If you have to miss an exam due to		
	emergencies (such as medical and other emergencies) please inform the		
	instructor as soon as possible before or immediately after the exam.		
	Class average for each exam will be announced in class and also posted		
	in Canvas after each exam. Final course grades will be determined on the		
	basis of the class average. If you miss any exam without getting prior		
	approval from the instructor at least a week before the exam date, it		
	will be counted as zero in the calculation of your final course grade. If		
	will be counted as zero in the calculation of your final course grade. If		

Department of Mechanical Engineering Phone: +1.903.566.7003

Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

	you intend to be absent for a university-sponsored event or activity, you			
	(or the event sponsor) must notify the instructor at least a week prior to			
	the date of the planned absence.			
Course Learning	By the end of this course, students will be able to:			
Objectives / ABET &	1. Derive analytical solutions to heat transfer problems			
PEOs Relation	2. Use analytical solutions to determine temperature distribution			
	3. Analyze systems using the principles of conduction, convection, and radiation			
	4. Analyze multimode heat transfer problems to determine heat transfer rates as well as temperature distribution			
	5. Apply numerical methods to solve heat transfer problems			
	6. Enhance literature research and oral presentation skills transfer			
Tentative Topics / Course Plans	Steady and unsteady conduction in one or more dimensions; forced and natural convection; thermal radiation, black bodies, grey radiation networks, spectral and solar radiation; numerical simulation of conduction, convection, and radiation. Problems and examples emphasize modeling of complex systems drawn from current heat transfer applications. See "Tentative Course Outline" table below.			
University Policies	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021.pdf			

Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

Tentative Course Outline

	1	T	1
W	Date	TOPIC	Readings
1	12-Jan	Introduction, conduction heat transfer	
	1	Resistance concepts, circuits and approximations	
		1-D conduction with generation	1.1, 1.2, 1.3, 2.8
2	19-Jan	1-D conduction, numerical solution	
	1	Extended surfaces, fin efficiency and resistance	
	1		1.4, 1.5, 1.6
3	26-Jan	Extended surfaces-fin behavior, finned surfaces	11.1, 110, 110
		Bessel functions	
		Introduction to separation of variables	1.7, 1.8, 2.2
4	2-Feb	Separation of variables and superposition	
		Lumped capacitance problems-analytical solutions and	
	1	the lumped time capacitance time constant	
		Numerical solutions to lumped capacitance problems	2.4, 3.1, 3.2
5	9-Feb	Transient 1-D problems – semi-infinite bodies and the diffusive time constant	
	1	Introduction to Laplace transforms	
	ļ	Laplace transforms for 1-D transient problems	3.3, 3.4
6	16-Feb	Exam #1	
	22 E 1	M. C. L. L.C. (C. L.D.C. C. C. L.)	
7	23-Feb	Numerical solutions to 1-D transient problems	
		Boundary layer concepts	2.5
8	2 Mar	Boundary layer equations Dimensional analysis and correlation, turbulent concepts	3.5
8	2-Mar	Integral method- momentum solutions/Integral method – energy equation	
	1	solutions solutions	
	1	Internal flow concepts	3.8, 4.1, 4.2
9	9-Mar	Internal flow correlations	5.0, 7.1, 7.2
_	1774	Internal flow energy balance	
	1	Reynolds average equations, inner Coordinates	4.3, 4.5, 4.9, 4.8, 5.1
10	13-Mar	SPRING BREAK	, , , , , , , , , , , , , , , , , , , ,
	to		
	18-Mar		
11	23-Mar	Exam #2	
	1	Examina	
12	30-Mar		
	1	Introduction to radiation, blackbodies	50.50.45.46
12	C A	Blackbody radiation exchange	5.2, 5.3, 4.5, 4.6
13	6-Apr	Real surfaces	
	1	Diffuse gray surface radiation exchange	10.1, 10.2, 10.3
14	12 12	Semi-gray surface radiation exchange Introduction to heat exchangers	10.1, 10.2, 10.3
14	13-Apr	Effectiveness-NTU method	
	1	Heat exchangers with phase change numerical models of counter/parallel flow	
	1	HX HX	10.4, 10.5
15	20-Apr	Heat exchangers with phase change numerical models of counter/parallel flow	10.7, 10.3
13	20 11pi	HX	
	1	Numerical solution to cross-flow HX	
	1	Paper Review/Project	10.4, 10.5
			,
	L	Final Exam	