

Instructor of Record: Dr. Pierre Neuenschwander **Professor**

Office: **BMR Lab B1**
Office Phone: 903-877-7593
E-Mail: Pierre.Neuenschwander@uttyler.edu
Office Hours: Thursdays, noon-1pm.

Course Description: The goal of the course is to provide a critical understanding of the relationship between structure and function of biological macromolecules such as proteins and nucleic acids. The Lab component of this course will give the students hands-on experience in using molecular modeling programs to learn how to manipulate protein structures, performing docking simulations, and graphically display proteins and nucleic acids structures.

Prerequisite: BIOT 5312

Co-requisite: BIOT 5221

Goals of Course & Course Objectives:

Course Objectives:

1. To be able to communicate and discuss fundamental molecular biochemical principles pertaining to protein structure & function.
2. To be able to use molecular modeling and molecular docking tools.
3. To be able to find and process scientific information.
4. To be able to explain and present molecular graphics.

Student Learning Outcomes (Course Competencies):

1. The student will be able to describe molecular modeling and its uses in biotechnology.
2. The student will be able to generate a polypeptide *in silico* and manipulate its structure.
3. The student will demonstrate their ability to use molecular modeling software such as *PyMol*, and *AutoDock Vina*.
4. The student will be able to access, download and visualize x-ray crystal structures of molecules from the RCSB Protein Data Bank.
5. The student will be able to perform *in silico* mutagenesis studies as well as *in silico* docking studies of various molecules.
6. The student will be able to discuss properties of protein structure and ligand interactions.

Subject-specific skills:

Students will learn how to use computer modeling and docking programs to perform in-silico experimentation and mutational studies.

Course Assessment/Methods of Evaluation:

Students who successfully complete the lab portion of this course will demonstrate a thorough understanding of protein structure, function, and binding interactions.

- Class Participation and Attendance (20% of final grade): Punctual attendance is critical. There will be a sign-up sheet for each class and it will be mandatory to sign in (legibly) for each class to record your attendance. Students are expected to be in attendance for the majority of class time to receive full credit. Each class will have an attendance credit total of 2 points. Tardiness of more than 30 minutes will result in a reduction of 1 attendance credit for that class, with an equivalent reduction after 60 min.
- Assignments & Quizzes (30% of final grade): There will be several assignments and Quizzes in this course, each will be worth from 10 to 20 points.

- Projects (50% of final grade): Each of the two major projects (Midterm and Final) will be worth 25% each.

Attendance	= 20%
Assignments	= 30%
Final Project	= 25%
Midterm Project	= <u>25%</u>
Total	= 100%

Each person's total score in each category will be divided into the maximum possible score for that category and then multiplied by the fractional percentage. These will be summed to obtain your final grade. For example:

$$[(29/30)*0.2] + [(35/40)*0.3] + [(90/100)*0.25] + [(95/100)*0.25] = 0.918 = 92\% = A$$

[Attendance] + [Assignments] + [Midterm Project] + [Final Project]

Linked Program Learning Outcomes:

The student learning outcomes listed above address the following Biotechnology Program PLOs:

- PLO-2. The student will demonstrate mastery of basic and advanced biotechnology methods
- PLO-3. The student will demonstrate the ability to safely operate basic and advanced laboratory equipment, analytic devices and computers.
- PLO-4. The student will demonstrate independent and critical thinking skills integrated with the ability to utilize multiple informational resources.

Textbook:

None.

Each student will need to have a Windows-compatible laptop PC for this class, with the proper software installed (see below).

Course Content:

Topical Content:

- Use of computers in biomolecular modeling
- How computers predict structures
- How computers display x-ray diffraction data
- Using computers in drug discovery
- Visualizing biomolecules
- Constructing biomolecules *in-silico*
- *In-silico* mutational studies
- *In-silico* docking simulations
- From *in-silico* to *in-vitro*: Testing the hypothesis

Software that students will need to download and install on their laptops before the first class: ALL ARE AVAILABLE DIRECTLY FROM THE CANVAS COURSE.

- **PyMol (Academic version, 2.5.10)**
- **MGL Tools (v 1.5.7)**
- **WinSCP (v 6.5.5)**

Other programs that students will learn to use and become familiar with are:

- V-fold (online)
- Autodock Vina (TACC)

Tentative Schedule:

Week 1. Introduction and Course Overview (01/12). We will go over some background (review) and present a brief overview of the course. Then we will spend some time learning how to access the VPN and move files back and forth in preparation for the next lab class. We will also set you all up with access to TACC for later.

Week 2. MLK Jr Holiday (01/19) – **No Class meeting but complete the following Module on CANVAS on your own during the week.**

Introduction to PyMOL. Read through the *PyMol for the Beginner* lesson on CANVAS and then take the **PyMol Quiz** before the next class.

Week 3. Building a Polypeptide (01/26). Read the two papers in CANVAS for consideration and discussion during class: What is the difference between the "helix propensity" and the "hydrophobicity index"? Are they related? (we will discuss in class). After the discussion, we will build your first molecular model (a peptide) using *PyMOL*.

Week 4. AutoDock (02/02). Docking molecules with *AutoDock Vina*. **You will need to go through the CANVAS lesson *Using AutoDock and AutoDock Vina* and then take the AutoDock quiz before class.** In lab we will prepare your molecular docking partners for the docking procedure as well as prepare your configuration file. These will be submitted to me at the end of class so I can review them before next class.

Week 5. Longhorn6 on TACC (02/09). Today you will set up your account on TACC if you haven't yet and I will add you to the docking allocation for the class. We will review how to access and use the TACC resources. You will also learn some simple Unix commands so that you can move around within the supercomputer using command line. If time permits we will also learn how to transfer files between the VPN computer and the supercomputer as well as log into the supercomputer and execute some commands to setup the system for next week.

Week 6. Set up a Docking Run (02/16). Today you will submit your first docking project to the supercomputer. It will involve setting up your "batch script" based on the template in this section. The batch script has nothing to do with docking but has all the required commands that the supercomputer will need to know what to do and set up the docking run for you and send the proper docking command to *Vina*. Once you have submitted the job, it is just a matter of waiting in the "queue" for the job to be completed. Depending on how many people are using the supercomputer at the time, this can be anywhere from a few minutes to 24 hours. We will review the docking results next week unless all of us get our results back today. We will see how it goes.

Week 7. Analyzing Your First Docking Project (02/23). Today you will download the docking results from your docking run and analyze the structures (molecular poses) on *PyMOL*. You will generate some figures of the results and write it all up in a short lab report (using the **Short Lab Report Template**) and submit it using the link in CANVAS. If we were able to download and analyze docking results last week, I will give you another molecule to dock today for extra practice. Either way, the peptide docking results are to be written up as a short lab report and submitted by next week.

Week 8. Start on Your Midterm Project (03/02). Choose a molecular pair for your midterm and begin your study. The completed **Midterm Project is due on Sunday March 29 by 11:59pm**. Use the Midterm Project link in CANVAS.

Week 9. SPRING BREAK (03/09) - No class.

Week 10. Analyzing Your Docking Results for Your Midterm Project (03/16). Complete work on your Midterm docking study and Lab Report. **MIDTERM DUE BY 11:59 pm Sun 3/29.**

Week 11. Continue working on your Midterm Project (03/23).

Week 12. V-fold (03/30). We will start a new module this week and learn how to fold an RNA molecule into different structures (folding patterns) and generate 3-D structures from these folding patterns. The lab is all through CANVAS this week. It will involve you working on your own (or in groups, however you like) to go through the lesson. You will need to have two windows open on your monitor: One with the lesson, and the other one with a web browser to access yet another supercomputer (online access).

Week 13. Perform and/or finish your docking of your RNA and P53CTD (04/06).

Week 14. Start Your Final Project (04/13). Details will be given during class but the project will involve starting from an RNA aptamer sequence, folding and making 3D-structural predictions, and docking a representative from each family to a protein target. You will have until Finals Week to complete this and submit your lab report Final Project write up.

Week 15. Continue work in lab on your Final Project (04/20).

Week 16. Continue work in lab on your Final Project (04/27).

FINALS WEEK: Final Project due no later than **Tuesday May 5, by 11:59 pm.**

Other Class Policies:

Academic Honesty:

Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to, cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts.

Cheating

Dishonesty of any kind involving examinations, assignments, alteration of records, wrongful possession of examinations, and unpermitted submission of duplicate papers for multiple classes or unauthorized use of keys to examinations is considered cheating. Cheating includes but is not limited to:

- Using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class.
- Falsifying or inventing any information, including citations, on an assigned exercise.
- Helping or attempting to help another in an act of cheating or plagiarism.

Plagiarism

Plagiarism is presenting the words or ideas of another person as if they were your own. Materials, even ideas, borrowed from others necessitate full and complete acknowledgment of the original authors. Offering the work of another as one's own is plagiarism and is unacceptable in the academic community. A lack of adequate recognition constitutes plagiarism, whether it utilizes a few sentences, whole paragraphs, articles, books, audio-visual materials, or even the writing of a fellow student. In addition, the presentation of material gathered, assembled or formatted by others as one's own is also plagiarism. Because the university takes such misconduct very seriously, the student is urged to carefully read university policy [Sec. 8-802. Academic Dishonesty](#). Examples of plagiarism are:

- Submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another.

- Submitting a work that has been purchased or otherwise obtained from an Internet source or another source.
- Incorporating the words or ideas of an author into one's paper without giving the author due credit.

AI (Artificial Intelligence) Policy:

UT Tyler is committed to exploring and using artificial intelligence (AI) tools as appropriate for the discipline and task undertaken. We encourage discussing AI tools' ethical, societal, philosophical, and disciplinary implications. All uses of AI should be acknowledged as this aligns with our commitment to honor and integrity, as noted in UT Tyler's Honor Code. Faculty and students must not use protected information, data, or copyrighted materials when using any AI tool. Additionally, users should be aware that AI tools rely on predictive models to generate content that may appear correct but is sometimes shown to be incomplete, inaccurate, taken without attribution from other sources, and/or biased. Consequently, an AI tool should not be considered a substitute for traditional approaches to research. You are ultimately responsible for the quality and content of the information you submit. Misusing AI tools that violate the guidelines specified for this course (see below) is considered a breach of academic integrity. The student will be subject to disciplinary actions as outlined in UT Tyler's Academic Integrity Policy.

Use of AI is not permitted in this course at all.

To best support your learning, you must complete all graded assignments by yourself to assist in your learning. Doing your own work, without human or artificial intelligence assistance, is best for your efforts in mastering course learning objectives. This exclusion of other resources to help complete assignments includes artificial intelligence (AI). Refrain from using AI tools to generate any course context (e.g., text, video, audio, images, code, etc.) for any assignment or classroom assignment.

Adding/Dropping:

The official deadline for adding and dropping courses is as published in the academic calendar ([Registrar Withdrawal webpage](#)). However, students are strongly encouraged to meet with their graduate advisor or the Program Coordinator prior to adding/dropping courses. Movement into and out of classes after the 4th class day requires approval of the Program Director. Each student is responsible for their own enrollment status with the university.

Disability Accommodations:

UT Tyler HSC abides by Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act, which mandate reasonable accommodations be provided for students with documented disabilities. If you have a disability and may require some type of instructional and/or examination accommodations, please contact me early in the semester so that I can provide or facilitate the provision of accommodations you may need. If you have not already done so, you will need to register with the Student Services Office (located on the main campus). You may call 903-566-7079 for more information.

A listing and description of all student policies can be found here: [Manual of Policies and Procedures for Student Affairs](#).

MARKETABLE SKILLS FOR YOUR CV/RESUME

Program:	Master of Science in Biotechnology
Degree:	MS
Department:	Cellular and Molecular Biology
School:	Medical Biological Sciences
Course:	BIOT5211/5221L – Proteins and Nucleic Acids (and associated lab)

Area	Marketable Skill*
TASKS	Maintain accurate laboratory records and data. Design molecular or cellular laboratory experiments, oversee their execution, and interpret results.
TECHNOLOGY SKILLS	Analytical or scientific software, Graphics and molecular imaging software – PyMOL, Autodock Vina, MGL Tools Object or component-oriented development software - Autodock Vina, MGLTools, Unix commands in supercomputer environment
SKILLS	Critical Thinking — Using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions, or approaches to problems.
ABILITIES	Written Comprehension — The ability to read and understand information and ideas presented in writing. Inductive Reasoning — The ability to combine pieces of information to form general rules or conclusions (includes finding a relationship among seemingly unrelated events). Written Expression — The ability to communicate information and ideas in writing so others will understand.
WORK ACTIVITIES	Analyzing Data or Information — Identifying the underlying principles, reasons, or facts of information by breaking down information or data into separate parts. Updating and Using Relevant Knowledge — Keeping up-to-date technically and applying new knowledge to your job. Getting Information — Observing, receiving, and otherwise obtaining information from all relevant sources. Documenting/Recording Information — Entering, storing, or maintaining information in written or electronic/magnetic form. Processing Information — Compiling, coding, calculating, tabulating, or verifying information or data.

*All marketable skills listed for this course and program were drawn from the Knowledge, Skills, and Abilities identified by the US Department of Labor and Statistics for “Biological Technicians” and “Molecular and Cellular Biologists” as published on O*Net Online (www.onetonline.org)