

Hypothesis testing is a statistical method that is used in making statistical decisions using experimental data. Hypothesis Testing is basically an assumption that we make about the population parameter.

One-tailed test: When the alternative hypothesis is “less than” or greater than”

- Some key words that might be used for “less than”: less than, fewer than, under filling, below expectations
- Some key words that might be used for “greater than”: greater than, more than, improvement, above speculations, overfilling, exceeds

Two-tailed test: When the alternative hypothesis is “not equal”

- Some key words than might be used for “not equal”: incorrect, differently, is not, different from, not the same as, has changed

Formulas:

Critical Value (Significant Level): $C.V. = \alpha$ (*alpha* usually given), $C.V. = \frac{\alpha}{2}$ (two-tailed test)

If α wasn't given, then assume it is .05

Degrees of Freedom (needed for t-table): $df = n - 1$

Calculate z-score: $z = \frac{x - \mu}{\sigma/\sqrt{n}}$, use z-score for big sample sizes ($n > 30$) OR given population standard deviation

(σ)

Calculate t-score: $t = \frac{x - \mu}{s/\sqrt{n}}$, use t-score for small sample sizes ($n < 30$) OR given sample standard deviation (s)

Hypothesis Testing Procedure:

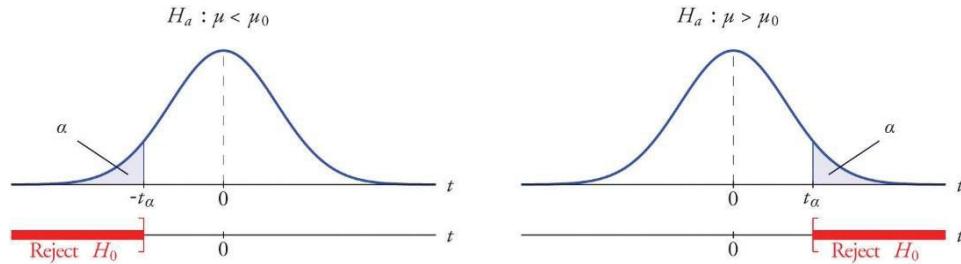
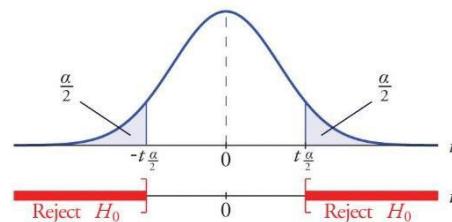
Critical-Value Approach

- Step 1** State the null and alternative hypotheses.
- Step 2** Decide on the significance level, α .
- Step 3** Compute the value of the test statistic.
- Step 4** Determine the critical value(s).
- Step 5** If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .
- Step 6** Interpret the result of the hypothesis test.

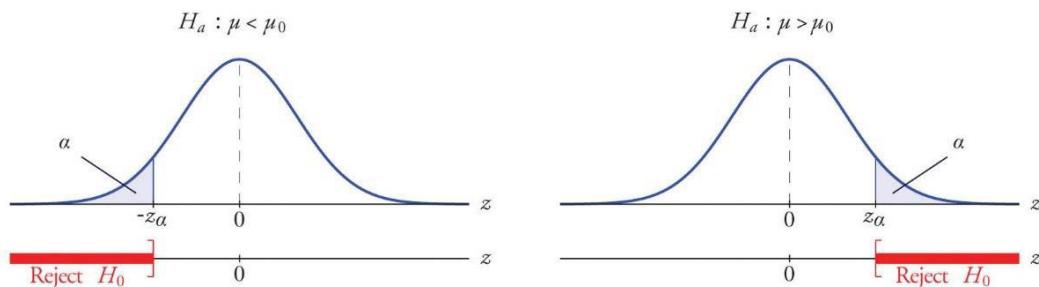
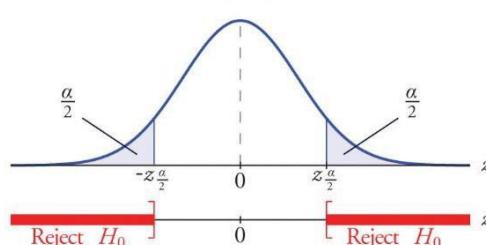
P-Value Approach

- Step 1** State the null and alternative hypotheses.
- Step 2** Decide on the significance level, α .
- Step 3** Compute the value of the test statistic.
- Step 4** Determine the *P*-value.
- Step 5** If $P \leq \alpha$, reject H_0 ; otherwise, do not reject H_0 .
- Step 6** Interpret the result of the hypothesis test.

Hypothesis testing: One-sample t-test


 $H_a : \mu \neq \mu_0$


Hypothesis testing: One-sample z-test


 $H_a : \mu \neq \mu_0$


Compare the critical value with the test statistic:

Two-Tailed

If $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$,
reject the null hypothesis

Two-Tailed

If $Z < -z_{\alpha/2}$ or $Z > z_{\alpha/2}$
reject the null hypothesis

Left-Tailed

If $t < -t_\alpha$, reject the
null hypothesis

Right-Tailed

If $t > t_\alpha$, reject the null
hypothesis

Left-Tailed

If $Z < -z_\alpha$ reject
the null hypothesis

Right-Tailed

If $Z > z_\alpha$ reject
the null hypothesis

Explanation of the pictures:**For one-tailed z OR t test:**

less than (<) hypothesis means the critical value will be negative

greater than (>) hypothesis means the critical value will be positive

If $p < \alpha$ **OR** $z_{test} < z_{critical}$ then you will Reject H_o due to sufficient evidence

If $p > \alpha$ **OR** $z_{test} > z_{critical}$ then you will Fail to Reject H_o due to insufficient evidence

If $p < \alpha$ **OR** $t_{test} < t_{critical}$ then you will Reject H_o due to sufficient evidence

If $p > \alpha$ **OR** $t_{test} > t_{critical}$ then you will Fail to Reject H_o due to insufficient evidence

For two-tailed z OR t test:

not equal (\neq) means the critical value will be negative AND positive which is why an absolute value will be used

If $p < \alpha$ **OR** $z_{test} < -z_{critical}$ **OR** $z_{test} > +z_{critical}$, then you will Reject H_o due to sufficient evidence

If $p > \alpha$ **OR** $-z_{critical} < z_{test} < +z_{critical}$, then you will Fail to Reject H_o due to insufficient evidence

If $p < \alpha$ **OR** $t_{test} < -t_{critical}$ **OR** $t_{test} > +t_{critical}$, then you will Reject H_o due to sufficient evidence

If $p > \alpha$ **OR** $-t_{critical} < t_{test} < +t_{critical}$, then you will Fail to Reject H_o due to insufficient evidence

Population Proportion Hypothesis Testing

If $p_0 \geq 5$ and $n(1 - p_0) \geq 5$, then the appropriate test statistic is given by:

Calculate the test statistic, z

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

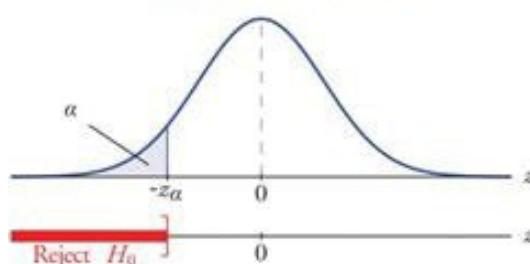
\hat{p} = sample proportion

p_0 = hypothesize population proportion

n = sample size

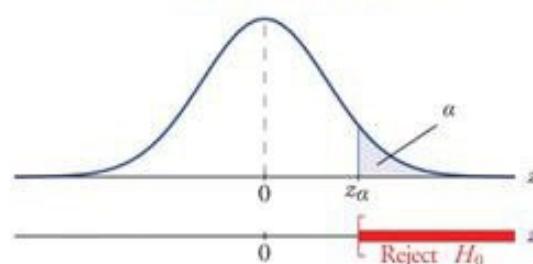
$$H_a: p < p_0$$

Left-tailed P-value



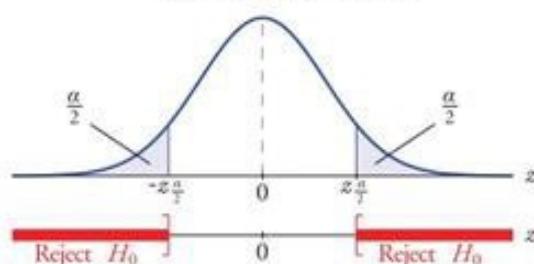
$$H_a: p > p_0$$

Right-tailed P-value



$$H_a: p \neq p_0$$

Two-tailed P-value



Two-Tailed

If $Z < -z_{\alpha/2}$ or $Z > z_{\alpha/2}$
reject the null hypothesis

Left-Tailed

If $Z < -z_\alpha$ reject
the null hypothesis

Right-Tailed

If $Z > z_\alpha$ reject
the null hypothesis

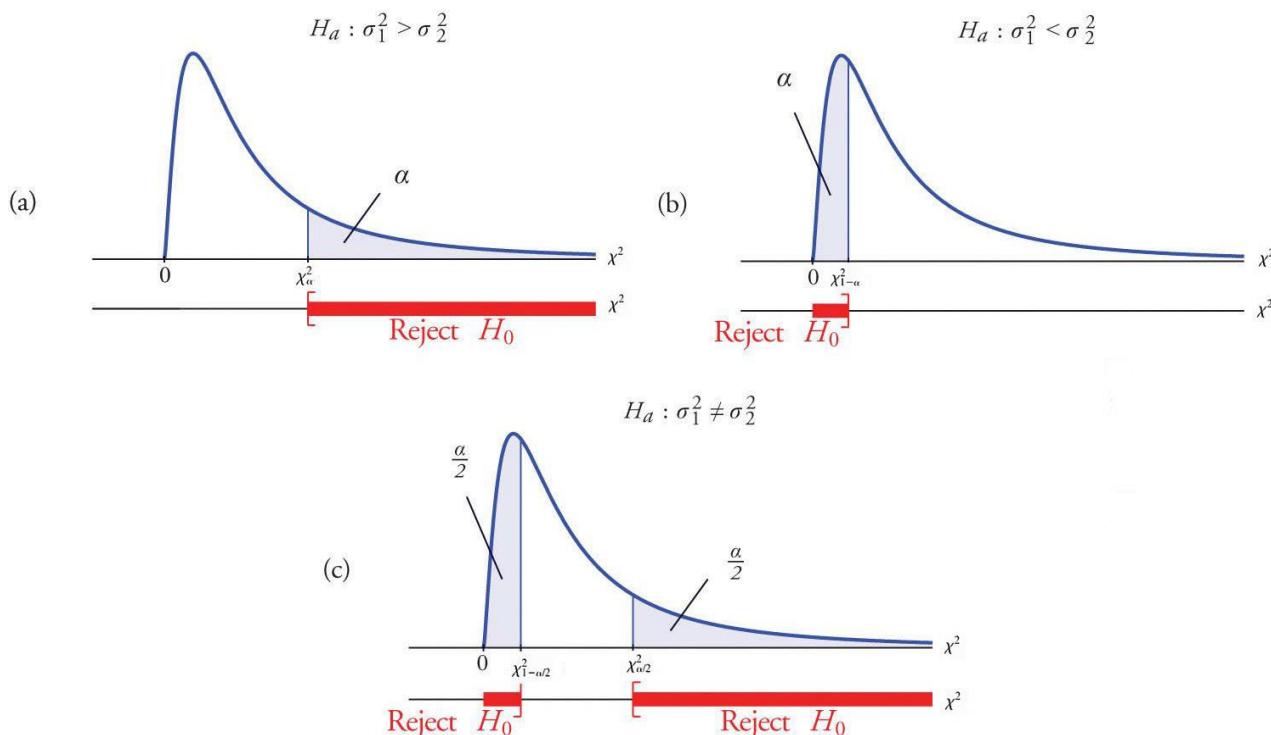
Chi-Squared Hypothesis Testing

$$\chi^2 = \frac{(n - 1)s^2}{\sigma^2}$$

where s = sample standard deviation and σ = population standard deviation

When using the chi-square table to look for the critical value: degrees of freedom (df) = $n - 1$

Hypothesis testing: One-sample chi-squared test



Compare the critical value with the test statistic.

Two-Tailed

If $\chi^2 < \chi_{1-\alpha/2}^2$ or $\chi^2 > \chi_{\alpha/2}^2$,
reject the null hypothesis.

Left-Tailed

If $\chi^2 < \chi_{1-\alpha}^2$, reject
the null hypothesis.

Right-Tailed

If $\chi^2 > \chi_{\alpha}^2$, reject the
null hypothesis.