Course Description: Introduction to analysis and design of prestressed beams, columns, and slabs. The course will cover the behavior of steel and concrete under sustained load (prestressing), analysis and design of pre-tensioned and posttensioned reinforced concrete members and designing these members into the integral structure.

Prerequisites: CENG 4311 Reinforced Concrete

Instructor: Dr. Mirmiran

TA: None

Class: Online Office Hours: Contact via CANVAS or email amirmiran@uttyler.edu

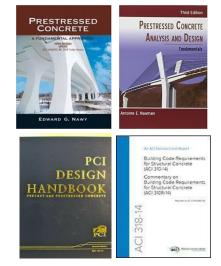
Course References: No textbook is required.

- 1. Prestressed Concrete: A Fundamental Approach, Nawy, Prentice Hall, 2009
- 2. Prestressed Concrete Analysis and Design, Naaman, Techno Press, 2012
- 3. PCI Design Handbook, Precast and Prestressed Concrete, 2010
- 4. ACI 318-14, Building Code Requirements for Structural Concrete, 2014

Course Outline:

- 1. Basic Prestressing Concepts, Materials, and Systems 2. Prestress Losses
- 3. Flexural Analysis and Design
- 4. Continuous Beams
- 5. Shear and Torsion
- 6. Camber and Deflections
- 7. Axially Loaded (Tension/Compression) Members
- 8. Prestressed Concrete Bridges

Course Objectives: By the end of this course, students will be able to


- Identify basic methods of fabricating prestressed concrete structures •
- Calculate prestress loss and understand loss mechanism
- Design a statically determinate prestressed concrete beam for stresses in serviceability limit state
- Design prestressed concrete beams to resist ultimate bending moments and shear forces •
- Calculate short- and long-term beam camber and deflections •
- Analyze and design prestressed concrete slabs and beam-columns

Assignments: Homework will be assigned regularly and must be submitted electronically by the due date. All work submitted for grading must be done **professionally** and **neatly** on engineering **computation paper**, and must include the problem statement, brief description of all steps in the solution procedure, appropriate sketches and equations, the important results **labeled**, and conclusions. Computer printouts, if necessary, must be appended with proper **annotations**.

Virtual Field Trip: A virtual field trip is planned for students to observe production of prestressed concrete members.

Exams: There will be one mid-term and one comprehensive final exam as shown on the tentative course schedule.

Grading Plan and Scale:		Grading Scale					
Homework	n 20% 35% 45%	А	В	С	D	F	
Mid-term Exam Final Exam		≥90	<u>></u> 80	<u>≥</u> 70	<u>></u> 60	<u>></u> 0	
		<100	<90	<80	<70	<60	

University of Texas at Tyler, Department of Civil Engineering Prestressed Concrete Design (CENG 5313 cross listed with CENG 4350) Tentative Schedule

Week ——		ates	Topic	CANVAS	Assignments
From	То	1	Module	0	
1	1/10	1/15	Basic Prestressing Concepts, Materials and Systems Virtual Plant Tour	1 & 2	
2	1/18	1/22	Prestress Losses	3 & 4	Homework 1
3	1/24	1/29	Flexural Analysis and Design I	5	Homework 2
4	1/31	2/5	Flexural Analysis and Design II	6	
5	2/7	2/12	Flexural Analysis and Design III	7	Homework 3
6	2/14	2/19	Flexural Analysis and Design IV	8	
7	2/21	2/26	Continuous Beams	9	Homework 4
Q	8 2/28	3/5	Preparation for Mid-Term		
0			Mid-Term Exam: Concepts, Losses and Flexure		
9	3/7	3/12	Spring Break – No Class		
10	3/14	3/19	Review of Mid-Term Exam Shear and Torsion I	10	
11	3/21	3/26	Shear and Torsion II	11	Homework 5
12	3/28	4/2	Shear and Torsion III	12	
13	4/4	4/9	Camber and Deflections	13	Homework 6
14	4/11	4/16	Axially Loaded Tension/Compression Members	14	Homework 7
15	4/18	4/23	Course Review and Preparation for Final Exam		
16	4/25	4/30	Final Exam: Comprehensive		