The University of Texas at Tyler
Department of Electrical Engineering

EENG 3302: Digital Systems (required)

Syllabus

Catalog Description:
 EENG 3302: Digital Systems
 Boolean algebra, logic gates; number systems and codes; combinational logic;
 sequential logic; design of logic circuits; analog-digital interface; memory devices.
 Two hours of lecture and one three-hour lab per week.

Prerequisites: None

Credits: 3 (2 hours lecture, 1 hours laboratory per week)

Text(s): Thomas L. Floyd, Digital Fundamentals, 10th ed. Prentice Hall, 2009

Additional Material: None

Course Coordinator: Mukul V. Shirvaikar, Professor

Topics Covered: Introductory Digital Concepts; Number Systems, Operations, and Codes; Logic
 Gates; Boolean Algebra and Logic Simplification; Karnaugh Maps; Combinational
 Logic; Functions of Combinational Logic; Flip-Flops and Related Devices;
 Counters; Shift Registers; Sequential Logic; Memory and Storage; Introduction to
 Microprocessors; Integrated Circuit Technologies.

Evaluation Methods:
 1. Examinations / Quizzes
 2. Homework
 3. Report
 4. Computer Programming
 5. Project
 6. Presentation
 7. Course Participation
 8. Peer Review

Course Objectives:
 1. formulate and solve problems involving Boolean Algebra [1,3]
 2. solve problems involving digital codes, operations and number systems [1,3]
 3. apply Karnaugh Maps to digital logic systems [1,3,5]
 4. design digital systems using simple logic elements [1,3,5]
 5. demonstrate knowledge of sequential logic circuits elements like flip-flops, and
 latches and their applications [1,3,5]
 6. demonstrate knowledge of advanced circuits like counters and registers [1,3,5]
 7. write laboratory reports with experimental results demonstrating visual and
 written communication skills [5]

Numbers in brackets refer to method(s) used to evaluate the course objective.
Relationship to Program Outcomes (only items in dark print apply): This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

1. have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering; [1-5]
2. have the ability to use modern engineering tools and techniques in the practice of electrical engineering; [1-5]
3. have the ability to analyze electrical circuits, devices, and systems; [1-5]
4. have the ability to design electrical circuits, devices, and systems to meet application requirements; [1-5]
5. have the ability to design and conduct experiments, and analyze and interpret experimental results; [1-5]
6. have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods; [1-3]
7. have effective written, visual, and oral communication skills;
8. possess an educational background to understand the global context in which engineering is practiced, including:
 a. knowledge of contemporary issues related to science and engineering;
 b. the impact of engineering on society;
 c. the role of ethics in the practice of engineering;
9. have the ability to contribute effectively as members of multi-disciplinary engineering teams;
10. have a recognition of the need for and ability to pursue continued learning throughout their professional careers.

Numbers in brackets refer to course objective(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:	hours
Engineering Sciences and Design:	3 hours
General Education Component:	hours

Grade Replacement:

If you are repeating this course for a grade replacement, you must file an intent to receive grade forgiveness with the registrar by the 12th day of class. Failure to file an intent to use grade forgiveness will result in both the original and repeated grade being used to calculate your overall grade point average. A student will receive grade forgiveness (grade replacement) for only three (undergraduate student) or two (graduate student) course repeats during his/her career at UT Tyler. (2006-08 Catalog, p. 35)

Prepared By: Janet Barger, Assistant Professor
Edited By: David Beams, Associate Professor
 Mukul Shirvaikar, Associate Professor
 Mukul Shirvaikar, Associate Professor
 Mukul Shirvaikar, Professor

Date: 5 January 2002
 28 June 2002
 8 January 2004
 6 January 2005
 9 January 2006
 21 December 2006
 13 January 2008
 12 January 2009
 20 August 2010