The University of Texas at Tyler
Department of Electrical Engineering

Course: EENG 4302 – Measurement and Instrumentation Systems (Elective)

Syllabus

Catalog Description:
EENG 4302: Instrumentation and Measurement Systems: An introduction to instrumentation and measurement systems. Generalized instrument characteristics, signal condition, and sensors for measurement of various physical quantities.

Prerequisites: EENG 4309 (Prerequisite or co-requisite)

Credits: (3 hours lecture, 0 hours laboratory per week)

Text(s):
Sensors and Signal Conditioning, 2nd Edition
Ramon Pallas-Areny, John G. Webster
Published by John Wiley & Sons, November 2000
ISBN: 0-471-33232-1

Additional Material:

Course Coordinator: Beams, D. M.

Topics Covered: (paragraph of topics separated by semicolons)
- Generalized instrument characteristics; resistive sensors (potentiometers, strain gages, thermistors, RTDs); signal conditioning for resistive sensors; chopper-stabilized amplifiers; carrier amplifiers; lock-in amplifiers; instrumentation amplifiers; thermocouples; thermocouple electronic cold-junction compensation; LVDTs; phase-sensitive demodulation; digital sensors; sensors based on semiconductor p-n junctions.

Evaluation Methods: (only items in dark print apply):
1. Examinations / Quizzes
2. Homework
3. Report
4. Computer Programming
5. Project
6. Presentation
7. Course Participation
8. Peer Review

Course Objectives1: By the end of this course students will be able to:
1. Explain the concepts of sensors and transducers [1,2];
2. Explain the dynamics of zero-, first-, and second-order measurement systems [1,2];
3. Design and analyze measurement systems employing a Wheatstone bridge [1,2];
4. Design and analyze instrumentation amplifiers [1,2];
5. Design and analyze measurement systems using strain gages [1,2];
6. Design and analyze measurement systems using thermocouples, including cold-junction compensation [1,2];
7. Explain the operation of chopper-stabilized amplifiers [1,2];
8. Explain the principles of coherent (phase-sensitive) demodulation [1,2];
9. Design and analyze measurement systems using LVDTs [1,2];

Numbers in brackets refer to method(s) used to evaluate the course objective.

Relationship to Program Outcomes (only items in dark print apply)

This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

1. have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering (1);
2. have the ability to use modern engineering tools and techniques in the practice of electrical engineering (2);
3. have the ability to analyze electrical circuits, devices, and systems (3);
4. have the ability to design electrical circuits, devices, and systems to meet application requirements (3);
5. have the ability to design and conduct experiments, and analyze and interpret experimental results (1);
6. have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods;
7. have effective written, visual, and oral communication skills;
8. possess an educational background to understand the global context in which engineering is practiced, including:
 a. knowledge of contemporary issues related to science and engineering;
 b. the impact of engineering on society;
 c. the role of ethics in the practice of engineering;
9. have the ability to contribute effectively as members of multi-disciplinary engineering teams;
10. have a recognition of the need for and ability to pursue continued learning throughout their professional careers.

Numbers in parentheses describe the degree to which the Program Outcome is supported by this course.

 (1): Program Outcome is a minor focus of this course;
 (2): Program Outcome is a significant focus of this course;
 (3): Program Outcome is a major focus of this course.

Numbers in brackets refer to course objective(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

<table>
<thead>
<tr>
<th>Mathematics and Basic Sciences:</th>
<th>hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Sciences and Design:</td>
<td>3 hours</td>
</tr>
<tr>
<td>General Education Component:</td>
<td>hours</td>
</tr>
</tbody>
</table>

Prepared By: David M. Beams Date: Aug. 29, 2011