The University of Texas at Tyler
Department of Electrical Engineering

Course: EENG 4317 – Power Electronics (Elective)

Syllabus

Catalog Description:
The use of solid state components in power systems; rectifying devices; diode circuits and rectifiers; controlled rectifier circuits; AC voltage controllers; Thyristor commutation techniques; DC choppers; speed torque characteristics of motors and loads; starting, braking and transient analysis of electric motors; introduction to HVDC. Three hours of lecture per week. Prerequisites: EENG 4309. Prerequisite or Co-requisite: EENG 4310.

Prerequisites: EENG 4309, prerequisite or co-requisite: EENG 4310

Credits: (3 hours lecture, 0 hours laboratory per week)

Text(s): M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Prentice Hall, 2004

Additional Material: Instructor’s Lectures Notes

Course Coordinator: Hassan El-Kishky

Topics Covered:
- Introduction to Power Electronics
- Diode Circuits and Rectifiers
- Thyristors and Converters
- Controlled Rectifiers
- AC Voltage Controllers
- Thyristor Commutation Techniques
- DC Choppers
- PWM Inverters
- Static Switches
- Power Supplies
- DC Drives
- AC Drives
- Introduction to HVDC

Evaluation Methods: (only items in dark print apply):
1. Examinations / Quizzes
2. Homework
3. Report
4. Computer Programming
5. Project
6. Research Papers
7. Presentation
8. Course Participation
9. Peer Review
Course Objectives\(^1\): By the end of this course students will be able to:

1. Analyze uncontrolled rectifier circuits \([1,5]\)
2. Analyze and design (conceptual) diode circuits and rectifiers \([1,5]\)
3. Analyze and design (conceptual) single-phase controlled rectifier circuits (converters) \([1,5]\)
4. Analyze three-phase controlled rectifier circuits \([1,5]\)
5. Analyze AC Voltage Controllers and static switches \([1,5]\)
6. Analyze DC choppers \([1,5]\)
7. Analyze simple AC and DC drives controllers \([1,5]\)

\(^1\)Numbers in brackets refer to method(s) used to evaluate the course objective.

Relationship to Program Outcomes\(^2\): This course supports the following Electrical Engineering Program Outcomes, which state that our students will have:

Graduates of the electrical engineering curriculum of the University of Texas at Tyler will:

1. have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering \([1-7]\).
2. have the ability to use modern engineering tools and techniques in the practice of electrical engineering \([1-7]\).
3. have the ability to analyze electrical circuits, devices, and systems \([1-7]\).
4. have the ability to design electrical circuits, devices, and systems to meet application requirements \([1-7]\).
5. have the ability to design and conduct experiments, and analyze and interpret experimental results;
6. have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods \([1-6]\).
7. have effective written, visual, and oral communication skills \([2]\)
8. possess an educational background to understand the global context in which engineering is practiced, including:
 a. knowledge of contemporary issues related to science and engineering;
 b. the impact of engineering on society;
 c. the role of ethics in the practice of engineering;
9. have the ability to contribute effectively as members of multi-disciplinary engineering teams;
10. have a recognition of the need for and ability to pursue continued learning throughout their professional careers \([1-7]\).

\(^2\)Numbers in brackets refer to course objective(s) that address the Program Outcome.

Prepared By: Hassan El-Kishky Date: 01/20/2011

Note: In reference to EE program outcome 4, design will be a minor focus in this course. Students will perform conceptual designs throughout the course.