The University of Texas at Tyler Department of Electrical Engineering

EENG 4312- Communications Theory (Required)

Syllabus

Catalog Description:

modulation techniques, effects of noise in communications system, signal to noise ratio, digital data transmission, probability of error, wireless channel, diversity, cellular network, multiple access schemes.

<u>Prerec</u>	uisites: EENG 4311, Co-requisite MATH 3351			
Credits	: (3 hours lecture, 0 hours laboratory per week)			
<u>Text(s)</u>	 Communication Systems Engineering by John G. Proakis, Masoud Salehi, 2nd Edition, Prentice Hall, ISBN-13: 9780130617934 Wireless Communications, A. Goldsmith, Cambridge University Press, 2005. 			
<u>Additic</u>	nal Material: Lecture Handouts			
<u>Course</u>	e Coordinator: Jounsup Park, PhD			
Fopics (Covered: (paragraph of topics separated by semicolons)			
Amplitude Modulation; Frequency Modulation; Information Theory; Digital Communications; Wireless Communications; Diversity; Medium Access Schemes;				
Evaluat	ion Methods: (only items in dark print apply):			
	Examinations / Quizzes			
2.	Homework			
3.	Report / Paper			
4.	Computer Programming			
5.	Project / Model			
6.	Presentation			
	Course Participation			

<u>Course Learning Objectives¹</u>: By the end of this course students will be able to:

- 1. Compute symbol information, information transmission rate, channel [1]
- 2. Select mixer filter combinations that will upshift and down shift spectra to desired specifications.[1]
- 3. Apply Fourier analysis to characterize communication Signals [4]
- 4. Design communication filter or circuit test it using simulation software [4]
- 5. Use simulation software to solve problems in time and frequency domain for communication systems[4, 6]
- 6. Analyze and predict bandwidth and power distribution properties for amplitude modulation systems AM (with carrier, suppressed carrier, single side band, vestigial sideband)[1,4]
- 7. Analyze and predict bandwidth and power distribution properties for angle modulation systems phase modulation, frequency modulation[1,4]
- 8. Explain operation for AM circuits, modulation schemes, demodulation schemes, envelope detectors[1]
- 9. Explain operation of FM circuits, modulation schemes, demodulation schemes, limiters [1]

- 10. Explain operation of phase lock loops and solve examples taken from applications in communication [1]
- 11. Explain advantages and disadvantages of super-heterodyne receivers and be able to solve for the local oscillator frequency and potentially interfering image frequencies[1]
- 12. Compute signal to noise power rations for AM and FM systems[1]
- 13. Compute parameters for quantization, and transmission bandwidth for analog to a pulse code modulation process, also TDM, digital data transmission[1]
- 14. Predict bit error probabilities in presence of additive white Gaussian noise [1]
- 15. Explain the wireless channel models using mathematical form [1]
- 16. Predict the performance of wireless communication systems [1]
- 17. Apply diversity schemes to design reliable wireless communication systems [4, 6]
- 18. Demonstrate knowledge of terminology, concepts, FCC rules to provide basis to communicate effectively with others in the technical community [1]
- 19. Find article from IEEE Spectrum, or other source that has relevance. Describe in short essay to describe this items.[3]

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Student Outcomes (only items in dark print apply)²</u>: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics; [1,2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; [19]
- 3. an ability to communicate effectively with a range of audiences;
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts; [3, 4, 5, 6, 7, 17]
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; [5, 17]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies. [19]

²Numbers in brackets refer to course objective(s) that address the Program Outcome.

<u>Contribution to Meeting Professional Component:</u> (in semester hours)

Mathematics and Basic Sciences:	0	hours
Engineering Sciences and Design:	3.0	hours
General Education Component:	0	hours

	Ron J. Pieper Hector A. Ochoa	Date:	Aug 17, 2012 June 3, 2013
<i>_</i>	Hector A. Ochoa		Aug 18, 2014
	Ron J. Pieper		Aug 20, 2015
	Seyed Ghorshi		Aug 20, 2016
	Jounsup Park		Aug 24, 2019
			May 28, 2020
			Sep 23, 2020

<u>Outline:</u>						
week	м	w	F	Contents		
1	Aug. 23	25	27	Introduction of Communication Systems		
2	30	Sep. 1	3	Review of Signals and Systems		
3	6	8	10	Power and Energy		
4	13	15	17	Bandpass Signal		
5	20	22	24	AM DSB-SC		
6	27	29	Oct. 1	AM DSB-TC		
7	4	6	8	AM SSB/VSB		
8	11	13	15	Midterm Exam		
9	18	20	22	Angle Modulation FM and PM (1)		
10	25	27	29	Angle Modulation FM and PM (2)		
11	Nov. 1	3	5	Probability Review		
12	8	10	12	Random Process and Noise Modeling		
13	15	17	19	Noise		
14	29	Dec. 1	3	Digital Modulation and Optimum receiver		
15	6	8	10	Final Exam		