The University of Texas at Tyler Department of Electrical Engineering

EENG 4311 – Signals and Systems (required)

Syllabus

Catalog Description:

Types of signals; types of systems; properties of systems; convolution; Fourier series, Fourier transforms; Laplace transforms; Difference equations; Z-transform; Discrete-time systems; applications and design concepts.

Prerequisites:

EENG 2101, and EENG 3305

<u>Credits:</u> (3 hours lecture, 0 hours laboratory per week)

Text(s): B. P. Lathi, Linear Systems and Signals, 2nd edition, Oxford, 2005.

Additional Material: Class Notes

Course Coordinator: Jounsup Park, PhD

<u>Topics Covered</u>: (paragraph of topics separated by semicolons)

Signal and System Modeling; Time domain modeling of systems; Fourier Series; Fourier Transform and its applications; The Laplace Transform; Applications of the Laplace Transform; Z-Transform

Evaluation Methods: (only items in dark print apply):

- 1. Examinations / Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

<u>Course Learning Outcomes</u>¹: By the end of this course students will be able to:

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

- 1. Determine the circuit response to a periodic signal using the Fourier Series. (1)
- 2. Model linear time-invariant systems using convolution (1,2)
- 3. Describe how composite signals are used to determine the response of linear systems (1)
- 4. Utilize the Fourier Transform in the analysis of electronic circuits. (1)
- 5. Compute the signal energy using Parseval's Theorem (1)
- 6. Construct a proof for the frequency shifting theorem using the Fourier Transform

(1)

- 7. Determine the stability of an LTI system through an analysis of the pole locations in the s-plane. (1)
- 8. Demonstrate what happens in the frequency domain when a continuous signal is sampled. (2)
- 9. Design an anti-alias filter for a sampled data system. (1)
- 10. Design a FIR filter using the frequency-sampling method (2,4)
- 11. Utilize the z-Transform to describe a discrete-time signal (1)
- 12. Write a paper on a contemporary issue related to signals and systems (3)
- 13. Design a discrete-time system using multipliers, adders, and delay elements (1)

Relationship to Student Outcomes (only items in dark print apply)²: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics; [1, 3, 4, 6, 10, 11]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; [2, 5, 7, 8, 9, 13]
- 3. an ability to communicate effectively with a range of audiences
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; [12]
- an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences: 0 hours Engineering Sciences and Design: 3.0 hours General Education Component: 0 hours

 Prepared By:
 R. Hippenstiel
 Date:
 14 Jan 2007

 Modified By:
 Hector A. Ochoa
 Date:
 7 Jan 2008

 David Hoe
 12 Jan 2014

 Seyed Ghorshi
 11 Jan 2019

 Jounsup Park
 10 Jan 2022

²Numbers in brackets refer to course objective(s) that address the Program Outcome.

Evaluation Methods: Homeworks: 20%, Quizs: 20%, Matlab Assignments: 10%, Midterm

Exam: 25%, Final Exam: 25%

Course Outline:

week	Tue	Thur	Contents	Assignments
1	Jan 11	13	Basics of Signal	
2	18	20	Introduction to Systems	HW1
3	25	27	Time-Domain Analysis (1)	HW2
4	Feb 1	3	Time-Domain Analysis (2)	HW3
5	8	9	Convolution	Quiz 1
6	15	17	Laplace Transform	Matlab1
7	22	24	Frequency Response	HW4
8	Mar 1	3	Midterm Exam	
9	8	10	Spring Break	
10	15	17	Fourier Series	HW5
11	22	24	Fourier Transform	HW6
12	29	31	Sampling	Quiz 2
13	Apr 5	7	DTFT	Matlab2
14	12	14	Z-Transform (1)	HW7
15	19	21	Z-Transform (2)	HW8
16	26	28	Final Exam	