The University of Texas at Tyler Department of Electrical Engineering

EENG 3307: Microprocessors (required)

Syllabus

Catalo	og Description:	Oynabus				
Mi Mi co	icroprocessor archite	ecture, programming and interfacing. Introduction to assembly language programming; poontrollers, instruction set, chip interfacing, addressing modes, interrupts, input/output, hours of lecture per week with integrated laboratory sessions. Prerequisites: EENG /1436				
Prerequisites: EE		ENG 3302 - Digital Systems, COSC 1336/1436 – Programming				
Cred	lits: (2	hours lecture, 3 hours laboratory per week)				
<u>Text</u>	ext(s): Ronald J. Tocci and Frank J. Ambrosio, Microprocessors and Microcomputers: Hardware and Software, 6th ed . Prentice Hall, 2003 ISBN: 0-13-060904-8, ISBN-13: 9780130609045					
<u>Addi</u>	tional Material:	Motorola 68HC11 Development Board. Laboratory projects are integrated to provide students with hands-on experience.				
<u>Cour</u>	rse Coordinator:	Melvin Robinson, Assistant Professor				
Mi co Mi su sy Evalue	icrocomputer Funda imputers; Microproc icrocomputer Progra ibroutines, and inte- inchronous and asyr	amming				
		es1: By the end of this course students will be able to:				
 Solve problems involving conversions between decimal, binary, octal and hexadecimal number systems, signed numbers, arithmetic operations, floating point numbers and representation standards [1] Understand the operation of basic digital systems in the context of microcontroller design including 						
F	parallel/serial transmission, tri-state logic, clocking, flip-flops and registers, data bus operation [1] B. Demonstrate knowledge of memory systems including architecture, operation, types, read/write cycles, timing					
	diagrams, applications and techniques to expand word size and capacity [1] . Explain the basic operational principles of microprocessors and microcontrollers including architecture,					
i	instruction formats, r	nachine language, program and data sections, firmware, step-wise program execution lecode-execute cycle [1]				
5. I	Design complete and	d partial address decoding schemes for the microcontroller using memory modules, write timing and logic components like decoders and tri-state buffers [1]				

- 6. Identify and explain the microcontroller operation from functional block diagrams including: register section, ALU, timing and control, multiplexed buses, pinout, modes of operation and signals [3]
- 7. Analyze the various types of microcontroller assembly language instructions including addressing modes, processor condition codes, speed of operation and analysis of programs or code segments [3]
- 8. Outline the operation of an assembler and implement the entire process of writing, compiling, loading and running an assembly language program [3]
- 9. Illustrate the following concepts and their implementation on the microcontroller: stack operation, interrupt service routines, reset vectors, memory maps, time delay routines [1]

- 10. Formulate microcontroller input-output solutions utilizing general purpose I/O, interrupts and the timer subsystem [3]
- 11. List input/output interfacing solutions for issues like voltage mismatch, implementation technology mismatch, power requirements, isolation from electrical loads, and parallel/serial interfacing [1]
- 12. Implement microcontroller applications using peripherals like the serial interface and the analog-to-digital convertor (ADC) subsystem [3]
- 13. Incorporate information gained by independent learning from microcontroller technical reference manuals and other sources to implement projects and enhance reports [3]
- 14. Utilize modern software and hardware tools and techniques to design, debug and test microcontroller based projects using assembly language programming [4]
- 15. Perform laboratory experiments utilizing microcontroller systems demonstrating combined hardware-software interaction, co-design and debugging [3]

16. Write laboratory reports with experimental results demonstrating visual and written communication skills [3] ¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Program Outcomes (Student Learning Outcomes) ²</u>: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering; [1, 2, 11]
- 2. have the ability to use modern engineering tools and techniques in the practice of electrical engineering; [8, 14]
- 3. have the ability to analyze electrical circuits, devices, and systems; [3, 4, 6, 7, 9]
- 4. have the ability to design electrical circuits, devices, and systems to meet application requirements; [5, 10]
- 5. have the ability to design and conduct experiments, and analyze and interpret experimental results; [12, 15]
- have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods; [10]
- 7. have effective written, visual, and oral communication skills; [16]
- possess an educational background to understand the global context in which engineering is practiced, including:
 a. knowledge of contemporary issues related to science and engineering;
 - b. the impact of engineering on society;
 - c. the role of ethics in the practice of engineering;
- 9. have the ability to contribute effectively as members of multi-disciplinary engineering teams;
- have a recognition of the need for and ability to pursue continued learning throughout their professional careers.
 [13]

²Numbers in brackets refer to course learning outcome(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and	Basic Sciences:		hours
Engineering Scie	ences and Design:	3	hours
General Education	on Component:		hours

Grade Replacement:

If you are repeating this course for a grade replacement, <u>you must file an intent to receive grade forgiveness with</u> <u>the registrar by the 12th day of class</u>. Failure to file an intent to use grade forgiveness will result in both the original and repeated grade being used to calculate your overall grade point average. A student will receive grade forgiveness (grade replacement) for only three (undergraduate student) or two (graduate student) course repeats during his/her career at UT Tyler. (2006-08 Catalog, p. 35)

Prepared By:	Mukul V. Shirvaikar	Date:	August 8, 2003
Modified By:	Mukul V. Shirvaikar		August 25, 2004
-			August 20, 2005
			January 11, 2010
			January 11, 2012
			January 4, 2013
			December 29, 2014
			January 9, 2017