The University of Texas at Tyler Department of Electrical Engineering Houston Engineering Campus

<u>Course: EENG 4110 – Electric Power Systems Laboratory</u> (Required for students entering the electrical engineering program in or after fall,2016)

Syllabus

Catalog Description:

Magnetic circuits; principles of electromagnetic energy conversion; synchronous machines; three-phase induction machines; Transformers; DC machines; fundamentals of power systems modeling and design; power flow analysis.

Prerequisites: EENG 4310								
<u>Cre</u>	edits:	3 (3 hours lecture, 3 hours laboratory per week						
	<u>(t(s):</u>	Glover, Overbye and Sarma, Power System Analysis and Design, 6th ed.,						
<u>(Re</u>	equired)	ISBN-10: 1305632133 ; ISBN-13: 9781305632134						
Additional Laboratory procedure handouts (provided on-line) Material: (Recommended)								
Course Coordinator: Hassan El-Kishky, PhD								
	Topics Covered:							
:	3-phase AC Pow	Circuits and Systems						
 Power Transformers Induction Machines 								
						:	•	onous Machines Fransmission Line Models
-		phous alternator						

Evaluation Methods: (only items in dark print apply):

1.	Examinations / Quizzes	1
2.	Homework	
3.	Report	
4.	Computer Programming	
5.	Project	
6.	Presentation	
7.	Course Participation	
8	Peer Review	

Course Learning Outcomes (formerly Objectives)¹: By the end of this course students will be able to:

- 1. Set up experiments to measure the three-phase power.
- 2. Set up experiments to determine the equivalent circuit of a power transformer.
- 3. Set up experiments to determine the voltage regulation of a power transformer.
- 4. Set up experiments to determine the equivalent circuit of a three-phase induction motor.
- 5. Set up experiments to determine the torque/slip characteristics three-phase induction motor.
- 6. Set up experiments demonstrate the voltage regulation of synchronous machines.
- 7. Set up experiments to determine the characteristics of DC machines.
- 8. Set up experiments to test power transmission lines.
- 9. Model electric power system components.
- 10. Perform load-flow studies of electric power systems.

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Program Outcomes (only items in dark print apply)²</u>: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. Have the ability to apply knowledge of the fundamentals of mathematics, science, and engineering. [1,2,3,4,5,9,10]
- 2. Have the ability to use modern engineering tools and techniques in the practice of electrical engineering. [1,2,3,4,5,9,10]
- 3. have the ability to analyze electrical circuits, devices, and systems [1,2,3,4,5,9,10]
- 4. Have the ability to design electrical circuits, devices, and systems to meet application requirements. [19]
- 5. Have the ability to design and conduct experiments, and analyze and interpret experimental results. [1,2,3,4,5,9]
- 6. Have the ability to identify, formulate, and solve problems in the practice of electrical engineering using appropriate theoretical and experimental methods. [9,10]
- 7. Have effective written, visual, and oral communication skills. [17]
- 8. possess an educational background to understand the global context in which engineering is practiced, including
 - a. Knowledge of contemporary issues related to science and engineering. [10]
 - b. The impact of engineering on society. [21]
 - c. the role of ethics in the practice of engineering.[13]
- 9. have the ability to contribute effectively as members of multi-disciplinary engineering teams.[20]
- **10.** Have a recognition of the need for and ability to pursue continued learning throughout their professional careers. [4]

²Numbers in brackets refer to course learning outcomes/objective(s) that address the Program Outcome. Contribution to Meeting Professional Component: (in semester hours)

l	induition to meeting r rolessional com	ponent.	(in semeste
	Mathematics and Basic Sciences:	0	hours
	Engineering Sciences and Design:	1	hours
	General Education Component:	0	hours

	· · · · · · · · · · · · · · · · · · ·		+	
Prepared:	Dr. Hassan El-Kishky	Date:	08/25/2019	