The University of Texas at Tyler Department of Electrical Engineering

Course: EENG 4311.031 - Signals and Systems

Syllabus

Catalog Description:

Types of signals; types of systems; properties of systems; convolution; Fourier series, Fourier transforms; Laplace transforms; Difference equations; Z-transform; Discrete-time systems; applications and design concepts.

Prerequisites:	EENG 3305 Linear Circuits Analysis II, EENG 2101 MATLAB for Engineers
Credits: (3 hours lecture, 0 hours laboratory per week)
Text(s): B. P. L	athi, Linear Systems and Signals, 2 nd edition, Oxford, 2005.
Additional Materia	al: Class Notes
Course Coordina	tor: Seyed Ghorshi, PhD

<u>Topics Covered</u>: (paragraph of topics separated by semicolons)

Signal and System Modeling; Time domain modeling of systems; Fourier Series; Fourier Transform and its applications; The Laplace Transform; Applications of the Laplace Transform; Z-Transform

Evaluation Methods: (only items in dark print apply):

1. Examinations / Quizzes

- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

<u>Course Learning Outcomes¹</u>: By the end of this course students will be able to:

- 1. Determine the circuit response to a periodic signal using the Fourier Series. (1)
- 2. Model linear time-invariant systems using convolution (1,2)
- 3. Describe how composite signals are used to determine the response of linear systems (1)
- 4. Utilize the Fourier Transform in the analysis of electronic circuits. (1)
- 5. Compute the signal energy using Parseval's Theorem (1)
- Construct a proof for the frequency shifting theorem using the Fourier Transform (1)
- 7. Determine the stability of an LTI system through an analysis of the pole locations in the s-plane. (1)
- 8. Demonstrate what happens in the frequency domain when a continuous signal is sampled. (2)
- 9. Design an anti-alias filter for a sampled data system. (1)
- 10. Design a FIR filter using the frequency-sampling method (2,4)
- 11. Utilize the z-Transform to describe a discrete-time signal (1)
- 12. Write a paper on a contemporary issue related to signals and systems (3)
- 13. Design a discrete-time system using multipliers, adders, and delay elements (1)

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Program Outcomes (only items in dark print apply)</u>²: This course supports the following Electrical Engineering Program Outcomes, which state that our students will:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics; [1,3,4,6,11]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; [2,5,7,8,9,13]
- 3. an ability to communicate effectively with a range of audiences;
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts; [1,2]
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; [9,13]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

²Numbers in brackets refer to course objective(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:	0	hours
Engineering Sciences and Design:	3	hours
General Education Component:	0	hours

Prepared By:	R. Hippenstiel	Date:	14 Jan 2007
Modified By:	Hector A. Ochoa	Date:	7 Jan 2008
	David Hoe		12 Jan 2014
	Seyed Ghorshi		11 Jan 2019
			6 Jan 2020