The University of Texas at Tyler Department of Electrical Engineering

EENG 4312- Communications Theory (Required)

Syllabus

Catalog Description:

Signals, Systems, and modulation techniques, effects of noise in communications system, signal to noise ratio, digital data transmission, probability of error.

Prerequisites: EENG 4311, Co-requisite MATH 3351				
Credits: (3 hours lecture, 0 hours laboratory per week)				
Text(s): Communication Systems Engineering by John G. Proakis, Masoud Salehi, 2nd Edition, Prentice Hall, ISBN-13: 9780130617934				
Additional Material: Lecture Handouts				
Course Coordinator: Jounsup Park, PhD				
<u>Topics Covered</u> : (paragraph of topics separated by semicolons) Amplitude Modulation; Frequency modulation; Information Theory; Digital Communications				
Evaluation Methods: (only items in dark print apply):				
1. Examinations / Quizzes				
 Homework Report / Paper 				
4. Computer Programming				
5. Project / Model				
6. Presentation				

7. Course Participation

<u>Course Learning Objectives¹</u>: By the end of this course students will be able to:

- 1. Compute symbol information, information transmission rate, channel [1]
- 2. Select mixer filter combinations that will upshift and down shift spectra to desired specifications.[1]
- 3. Apply Fourier analysis to characterize communication Signals [4]
- 4. Design communication filter or circuit test it using simulation software [4]
- 5. Use simulation software to solve problems in time and frequency domain for communication systems[4]
- 6. Analyze and predict bandwidth and power distribution properties for amplitude modulation systems AM (with carrier, suppressed carrier, single side band, vestigial sideband)[1,4]
- 7. Analyze and predict bandwidth and power distribution properties for angle modulation systems phase modulation, frequency modulation[1,4]
- 8. Explain operation for AM circuits, modulation schemes, demodulation schemes, envelope detectors[1]
- 9. Explain operation of FM circuits, modulation schemes, demodulation schemes, limiters [1]
- 10. Explain operation of phase lock loops and solve examples taken from applications in communication [1]
- 11. Explain advantages and disadvantages of super-heterodyne receivers and be able to solve for the local oscillator frequency and potentially interfering image frequencies[1]

- 12. Compute signal to noise power rations for AM and FM systems[1]
- 13. Compute parameters for quantization, and transmission bandwidth for analog to a pulse code modulation process, also TDM, digital data transmission[1]
- 14. Predict bit error probabilities in presence of additive white Gaussian noise [1]
- 15. Demonstrate knowledge of terminology, concepts, FCC rules to provide basis to communicate effectively with others in the technical community[1]
- 16. Find article from IEEE Spectrum, or other source that has relevance. Describe in short essay to describe this items.[3]
- 17. Write short one page report on role and provide short description for a communications on the role impact of on the role and impact of engineering on Society based on instructor supplied article [3,6]

¹Numbers in brackets refer to method(s) used to evaluate the course objective.

<u>Relationship to Student Outcomes (only items in dark print apply)²</u>: This course supports the following Electrical Engineering Student Outcomes, which state that our students will possess:

- an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics; [1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; [2, 4]
- 3. an ability to communicate effectively with a range of audiences;
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts; [16, 17]
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; [5]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies. [15]

²Numbers in brackets refer to course objective(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)

Mathematics and Basic Sciences:	0	hours
Engineering Sciences and Design:	3.0	hours
General Education Component:	0	hours

Prepared By:	Ron J. Pieper	Date:	Aug 17, 2012
Modified By:	Hector A. Ochoa		June 3, 2013
	Hector A. Ochoa		Aug 18, 2014
	Ron J. Pieper		Aug 20, 2015
	Seyed Ghorshi		Aug 20, 2016
	Jounsup Park		Aug 24, 2019
			May 28, 2020
		-	Aug 20, 2020

The University of Texas at Tyler Department of Electrical Engineering

EENG 4312 Communications Theory (Fall 2020)

Course Outline

Description: The goal of this course is to provide students an understanding of fundamentals of communication systems. The course will help students to develop analytical and design skills through the lectures about communication systems, channel, modulation, demodulation, and random process. The students will practice designing communication systems through assignments. At the end of the course, the students will be able to use appropriate method and tools to design communication systems achieving specific design goals.

Prerequisites: EENG4311, Co-requisite MATH3351

Credits: (3hours lecture, 0hours laboratory per week)

Text(s): Communication Systems Engineering by John G. Proakis, Masoud Salehi, 2nd Edition, Prentice Hall, ISBN-13: 9780130617934

Additional Material: Lecture Handouts will be uploaded on CANVAS before the lecture

Instructor: Jounsup Park, PhD (Office: RBN 2013, Email: jpark@uttyler.edu)

Class : Mon, Wed, and Fri 10 :10am~11 :05am

Office hour : by appointment via Zoom

Course website : CANVAS

Evaluation Methods: Homeworks: 20%, Midterm Exam: 40%, Final Exam: 40% Homeworks : Homework problems will be uploaded on CANVAS and students will need to upload their answer on CANVAS by the due date (11:59pm). Late submissions will not be accepted.

Midterm: A total worth of 40% of the final mark will be given to midterm.

Final Examination: The final examination carries weight of 40%. The final examination will take place during the regular examination period.

week	Mon	Wed	Fri	Contents
1	Aug 24	26	28	Introduction of Communication
	First day			Systems
2	31	Sep 2	4	Review of Signals and Systems
3	7	9	11	Fourier Series
	No class			
4	14	16	18	Fourier Transform
5	21	23	25	Power and Energy

Tentative Schedule :

1

6	28	30	Oct 2	Communication Channel
7	5	7	9	AM DSB-SC
8	12	14	16	AM DSB-TC
9	19	21	23	AM SSB-SC
10	26	28	30	AM VSB-SC
11	Nov 2	4	6	Carrier Acquisition
12	9	11	13	Angle Modulation FM and PM
13	16	18	20	FM PM Demodulation
14	30	Dec 2	4	Random Process Review
15	7	9	11	Noise Modeling

2