The University of Texas at Tyler Department of Electrical Engineering

Course: EENG 4332/5335 - FPGA Design

Syllabus

Catalog Description:

	Digital Systems design with Field Programmable Gate Arrays (FPGAs); Design and synthesis of reconfigurable logic with High-level Hardware Description Language; Logic Design using FPGAs; Architectural and System Design issues; Reconfigurable computing with FPGAs. Three hours of lecture each week.
Prerequisites:	EENG 3307 Microprocessors and EENG 4309 Electronic Circuits II or Consent of Instructor
Credits:	(3 hours lecture, 0 hours laboratory per week)
$\mathbf{T}_{a} = \mathbf{T}_{a} (\mathbf{x})$	
<u>Text(s):</u>	Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with Verilog Design. 3rd Edition. Mc Graw Hill, 2014. ISBN 9780073380544
<u>Additional</u> Material(s):	Peter J. Ashenden, The Student's Guide to VHDL. 2 nd edition. Morgan Kaufmann, 2008.
<u>Course</u> Coordinator:	Class Notes; Journal Articles
	Kazi Rashed, Electrical Engineering
Topics Covered	

Topics Covered:

(Paragraph of topics separated by semicolons)

VLSI CAD Tools; Fabrication of Integrated Circuits; Modeling Submicron Transistors; Static and Dynamic Logic Gate Design; Datapath design; Subsystem design; Delay, Power Characterization; Clock Distribution; Physical Design; Interconnect Modelling; Testing and Verification Issues.

Evaluation Methods (Only items in dark print apply):

- 1. Examinations/ Quizzes
- 2. Homework
- 3. Report
- 4. Computer Programming
- 5. Project
- 6. Presentation
- 7. Course Participation
- 8. Peer Review

<u>Course Objectives¹</u>: By the end of this course students will be able to:

- 1. Explain how FPGAs are used in digital system design. [1,2]
- 2. Design digital logic circuits using VHDL. [1,2]
- 3. Use CAD tools in the design, simulation, and implementation of FPGA designs. [4,5]

- 4. Analyze the implementation of reconfigurable logics in a VLSI process [1]
- 5. Design and implement Combinational and sequential logic circuits with FPGAs. [1,2,7]
- 6. Optimize the device sizing for a complex logic circuit using the concept of logical effort. [1,2]
- 7. Determine the delay in CMOS circuits. [1]
- 8. Characterize a CMOS logic gate utilizing SPICE simulation data. [4,5]
- 9. Implement transistor-level schematic of compound CMOS logic gates. [2]
- 10. Assess the design challenges of implementing dynamic logic circuits in submicron technologies. [1]
- 11. Analyze different memory architectures in the transistor-level. [1,2]
- 12. Identify the issues with testing complex logic circuits. [1,2]
- 13. Understand the issues with designing devices and circuits using nanotechnology. [1]
- 14. Explore the real-time advance applications of FPGA boards. [3,6]
- 15. Explore the current research trend in VLSI Design. [6]

¹ Numbers in brackets refer to method(s) to evaluate the course objective

Relationship to Program Outcomes (only items in dark print apply)². This course supports the following

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [1,2,9,10]
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors [4,6,11,12]
- 3. an ability to communicate effectively with a range of audiences [15]
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts [14]
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions [3,8]
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies [13]

Electrical Engineering Program Outcomes, which state that our students will: ²Numbers in brackets refer to course objective(s) that address the Program Outcome.

Contribution to Meeting Professional Component: (in semester hours)			
Mathematics and Basic Sciences:	0	hours	
Engineering Sciences and Design:	3	hours	
General Education Component:	0	hours	

Prepared By:

Prabha Sundaravadivel

Revised by Kazi Rashed

Date: 22-Aug-2018

08-Jan-2020