

MACHINE LEARNING WITHOUT LEARNING

PREMANANDA INDIC, PH.D. DEPARTMENT OF ELECTRICAL ENGINEERING

ORS Research Design & Data Analysis Lab Office of Research and Scholarship

>NO KNOWLEDGE OF PROGRAMMING

>NO KNOWLEDGE OF ANY QUANTITATIVE METHODS

http://clipart-library.com/clipart/2096816.htm

OUTLINE

>INTRODUCTION

DIFFERENT MACHINE LEARNING APPROACHES

►EXAMPLES

ANALYSIS PLATFORM

University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

ANALYSIS PLATFORM

MathWorks[®] Salvatore_Suici University of Texas at Tyler fx >>MLFeatures Classification Learner Learn MATLAB Teach with MATLAB Get Software What's New CLASSIFICATION LEARNING MATLAB Access for Everyone at Current Model University of Texas at Tyler Select a file to view detai

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

OUTLINE

>INTRODUCTION

DIFFERENT MACHINE LEARNING APPROACHES

►EXAMPLES

>What is Machine Learning ?

 Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction
- Classification

Too many books spoil the curiosity

Start with Andrew Ng, Machine Learning, Stanford University available on YouTube

Some Statistics & Programming Knowledge Helps !

Analytical Tools

Simple Calculator (Boolean Algebra) Scientific Calculator (Series Expansion, Boolean Algebra) Computer (Programming Language, Assembly Language, Series Expansion, Boolean Algebra) Smart Devices (ML Models, Programming Language, Assembly Language, Series Expansion, Boolean Algebra)

>Always there is a mathematical foundation

- Analytical Tools (Logarithm, Laplace Transform, Fourier Transform.....) Computational Tools (Boolean Algebra, Taylor Series Expansion,.....) Programming Languages (Basic, Fortran, C, C++, Java,) Assembly Languages (depending upon the computer processors) Machine Learning Models
- Artificial Intelligence

- Examples of Smart Systems
 - Voice Recognition
 - **Tumor Detection**
 - Weather Forecast
 - **Driverless Cars**

WHAT IS NEEDED?

- ➢Training Data
- Appropriate Model
- Procedure to Train (Make a machine to "learn")

(Learning Algorithms, Online vs Batch Learning, Instance Based vs Model Based)≻Test Data

OUTLINE

>INTRODUCTION

>DIFFERENT MACHINE LEARNING APPROACHES

►EXAMPLES

STANDARD MACHINE LEARNING

>ADVANCED MACHINE LEARNING

Based on Artificial Neural Networks (Deep Learning)

>SUPERVISED LEARNING

>UNSUPERVISED LEARNING

>SUPERVISED LEARNING

>UNSUPERVISED LEARNING

SUPERVISED LEARNING (Classification / Prediction)

Provide training set with features and solutions

SUPERVISED LEARNING (Classification / Prediction)

Find the area of a rectangle

L	W	Α	A1 (L+W)	A2 (L-W)	A3 (L*W)	A4 L/W
12.1	13.4	162.3	25.5	-1.3	162.14	0.90
8.6	9.7	83.4	18.3	-1.1	83.42	0.89
3.2	5.4	17.3	8.6	-2.2	17.28	0.59
6.1	10.2	62.25	16.3	-4.1	62.22	0.60
18.2	6.4	116.5	24.6	11.8	116.48	2.83
1.6	2.8	4.5	4.4	-1.2	4.48	0.57
7.7	0.6	4.7	8.3	7.1	4.62	12.83

SUPERVISED LEARNING (Classification / Prediction)

Find the area of a rectangle

L	W	A	E1 A-A1	E2 A-A2	E3 A-A3	E4 A-A4
12.1	13.4	162.3	136.8	163.6	0.16	161.40
8.6	9.7	83.4	65.1	84.5	0.02	82.51
3.2	5.4	17.3	8.7	19.5	0.02	16.71
6.1	10.2	62.25	45.95	66.35	0.03	61.65
18.2	6.4	116.5	91.90	104.70	0.02	113.66
1.6	2.8	4.5	0.1	5.7	0.02	3.93
7.7	0.6	4.7	3.6	2.4	0.08	8.13

- SUPERVISED LEARNING (Classification / Prediction)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests
 - Neural Networks

- SUPERVISED LEARNING (Classification / Prediction)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests
 - Neural Networks

SUPERVISED LEARNING (Classification / Prediction)

• Linear Regression

Given *m* outcomes y^i where i = 1, 2, ..., m with each outcome depends on *n* features x_j where j = 1, 2, ..., n. Find the best estimate of y^i as \hat{y}^i using the *n* features with appropriate parameters θ_j such that $J = \langle (\hat{y}^i - y^i)^2 \rangle$

 $\hat{y}^i = \theta_0^i + \theta_1^i x_1^i + \theta_2^i x_2^i + \cdots \dots + \theta_n^i x_n^i$

SUPERVISED LEARNING (Classification / Prediction)

• Linear Regression

 $\hat{y}^i = \theta_0^i + \theta_1^i x_1^i + \theta_2^i x_2^i + \cdots \dots + \theta_n^i x_n^i$

$$\hat{Y} = \Theta X = h_{\theta}(X)$$

Cost Function to Minimize

$$J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = (\hat{Y} - Y)^T (\hat{Y} - Y)$$

SUPERVISED LEARNING (Classification / Prediction)

• Linear Regression

$$\hat{y}^{i} = \theta_{0}^{i} + \theta_{1}^{i} x_{1}^{i} + \theta_{2}^{i} x_{2}^{i} + \dots + \theta_{n}^{i} x_{n}^{i}$$
$$\hat{Y} = \Theta \cdot X = h_{\theta}(X)$$

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize

$$J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = (\hat{Y} - Y)^T (\hat{Y} - Y)$$

- SUPERVISED LEARNING (Classification / Prediction)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests
 - Neural Networks

SUPERVISED LEARNING (Classification / Prediction)

Logistic Regression

$$\hat{p} = f(\Theta, X) = h_{\theta}(X); f(\Theta, X) = \frac{1}{1+e^{-t}}$$

 $\hat{y} = 1 \ if \hat{p} < 0.5; \ \hat{y} = 0 \ if \hat{p} \ge 0.5$

Derive Cost Function to Minimize

SUPERVISED LEARNING (Classification / Prediction)

• Linear Regression

Mainly for regression (predicting an outcome)

Logistic Regression

Mainly for classification (0 or 1)

High Risk vs. Low Risk

https://medium.datadriveninvestor.com/machine-learning-101part-1-24835333d38a

- SUPERVISED LEARNING (Classification / Prediction)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests
 - Neural Networks

SUPERVISED LEARNING (Classification / Prediction)

• Support Vector Machine

Used for regression as well as classification

SUPERVISED LEARNING (Classification / Prediction)

• Support Vector Machine (SVM)

Used for regression as well as classification

SUPERVISED LEARNING (Classification / Prediction)

• Support Vector Machine (SVM)

Used for regression as well as classification

https://medium.com/@LSchultebraucks/introduction-to support-vector-machines-9f8161ae2fcb

SUPERVISED LEARNING (Classification / Prediction)

• Support Vector Machine (SVM)

Used for regression as well as classification

 x_2

https://www.mathworks.com/matlabcentral/fileexchange/62061-multi-class-svm

- SUPERVISED LEARNING (Classification / Prediction)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests
 - Neural Networks

>SUPERVISED LEARNING

>UNSUPERVISED LEARNING

- Unsupervised Learning
 - Clustering
 - Principal Component Analysis
 - Independent Component Analysis
 - Singular Value Decomposition

Machine Learning with MATLAB

n_Driving_Car_Cartoon_Vector.svg

https://commons.wikimedia.org/wiki/File:Ma

http://clipartlibrary.com/mechaniccliparts.html

You have a complex problem involving a large amount of data and lots of variables. You know that machine learning would be the best approach—but you've never used it before. How do you deal with data that's messy, incomplete, or in a variety of formats? How do you choose the right model for the data?

Sounds daunting? Don't be discouraged. A systematic workflow will help you get off to a smooth start.

Mastering Machine Learning: A Step-by-Step Guide with MATLAB

Read ebook

OUTLINE

>INTRODUCTION

DIFFERENT MACHINE LEARNING APPROACHES

►EXAMPLES

Example 1

Prediction of House Price (housing.csv) Regression Problem

longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity https://www.kaggle.com/camnugent/california
-housing-prices/metadata

Example 1

Prediction of House Price: Regression Problem

longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	median_house_value
-122.23	37.88	41	880	129	322	126	8.3252	NEAR BAY	452600
-122.22	37.86	21	7099	1106	2401	1138	8.3014	NEAR BAY	358500
-122.24	37.85	52	1467	190	496	177	7.2574	NEAR BAY	352100
-122.25	37.85	52	1274	235	558	219	5.6431	NEAR BAY	341300
-122.25	37.85	52	1627	280	565	259	3.8462	NEAR BAY	342200
-122.25	37.85	52	919	213	413	193	4.0368	NEAR BAY	269700
-122.25	37.84	52	2535	489	1094	514	3.6591	NEAR BAY	299200
-122.26	37.84	42	2555	665	1206	595	2.0804	NEAR BAY	226700
-122.25	37.84	52	3549	707	1551	714	3.6912	NEAR BAY	261100
-122.26	37.85	52	2202	434	910	402	3.2031	NEAR BAY	281500
-122.26	37.85	52	3503	752	1504	734	3.2705	NEAR BAY	241800
-122.26	37.85	52	2491	474	1098	468	3.075	NEAR BAY	213500
177.70	27.04	ГЭ	<u> </u>	101	245	174	2 (72)		101200

Example 1

Prediction of House Price: Regression Problem

longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	median_house_value
-122.23	37.88	41	880	129	322	126	8.3252	NEAR BAY	452600
-122.22	37.86	21	7099	1106	2401	1138	8.3014	NEAR BAY	358500
-122.24	37.85	52	1467	190	496	177	7.2574	NEAR BAY	352100
-122.25	37.85	52	1274	235	558	219	5.6431	NEAR BAY	341300
-122.25	37.85	52	1627	280	565	259	3.8462	NEAR BAY	342200
-122.25	37.85	52	919	213	413	193	4.0368	NEAR BAY	269700
-122.25	37.84	52	2535	489	1094	514	3.6591	NEAR BAY	299200
-122.26	37.84	42	2555	665	1206	595	2.0804	NEAR BAY	226700
-122.25	37.84	52	3549	707	1551	714	3.6912	NEAR BAY	261100
-122.26	37.85	52	2202	434	910	402	3.2031	NEAR BAY	281500
-122.26	37.85	52	3503	752	1504	734	3.2705	NEAR BAY	241800
-122.26	37.85	52	2491	474	1098	468	3.075	NEAR BAY	213500
122.20	7704	E D	COC	101	245	174	2 (72)		101200

Demo

Prediction of House Price (housing_classification.csv) Classification Problem

longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value (High/Low) Threshold= Average Price (\$206875) ocean_proximity

Prediction of House Price: Classification Problem

		-								1
longitude		latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income o	cean_proximity	class
-	-122.23	37.88	41	880	129	322	126	8.3252 N	IEAR BAY	1
-	-122.22	37.86	21	7099	1106	2401	1138	8.3014 N	IEAR BAY	1
-	-122.24	37.85	52	1467	190	496	177	7.2574 N	IEAR BAY	1
-	-122.25	37.85	52	1274	235	558	219	5.6431 N	IEAR BAY	1
-	-122.25	37.85	52	1627	280	565	259	3.8462 N	IEAR BAY	1
-	-122.25	37.85	52	919	213	413	193	4.0368 N	IEAR BAY	1
-	-122.25	37.84	52	2535	489	1094	514	3.6591 N	IEAR BAY	1
-	-122.26	37.84	42	2555	665	1206	595	2.0804 N	IEAR BAY	1
-	-122.25	37.84	52	3549	707	1551	714	3.6912 N	IEAR BAY	1
-	-122.26	37.85	52	2202	434	910	402	3.2031 N	IEAR BAY	1
-	-122.26	37.85	52	3503	752	1504	734	3.2705 N	IEAR BAY	1
-	-122.26	37.85	52	2491	. 474	1098	468	3.075 N	IEAR BAY	1
-	-122.26	37.84	52	696	5 191	345	174	2.6736 N	IEAR BAY	0
-	-122.26	37.85	52	2643	626	1212	620	1.9167 N	IEAR BAY	0
-	-122.26	37.85	50	1120	283	697	264	2.125 N	IEAR BAY	0
	1 2 2 2 7	17 OF	F 2	1000		707	224			^

Prediction of House Price: Classification Problem

		<u></u>								
longitude		latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	class
	-122.23	37.88	41	880	129	322	126	8.3252	NEAR BAY	1
	-122.22	37.86	21	7099	1106	2401	1138	8.3014	NEAR BAY	1
	-122.24	37.85	52	1467	190	496	177	7.2574	NEAR BAY	1
	-122.25	37.85	52	1274	235	558	219	5.6431	NEAR BAY	1
	-122.25	37.85	52	1627	280	565	259	3.8462	NEAR BAY	1
	-122.25	37.85	52	919	213	413	193	4.0368	NEAR BAY	1
	-122.25	37.84	52	2535	489	1094	514	3.6591	NEAR BAY	1
	-122.26	37.84	42	2555	665	1206	595	2.0804	NEAR BAY	1
	-122.25	37.84	52	3549	707	1551	714	3.6912	NEAR BAY	1
	-122.26	37.85	52	2202	434	910	402	3.2031	NEAR BAY	1
	-122.26	37.85	52	3503	752	1504	734	3.2705	NEAR BAY	1
	-122.26	37.85	52	2491	474	1098	468	3.075	NEAR BAY	1
	-122.26	37.84	52	696	191	345	174	2.6736	NEAR BAY	0
	-122.26	37.85	52	2643	626	1212	620	1.9167	NEAR BAY	0
	-122.26	37.85	50	1120	283	697	264	2.125	NEAR BAY	0
	100.07	27 05	Den		דאר	202	224	י זדד ה		0

Prediction of House Price (housing_classification.csv) Classification Problem

Confusion Matrix

True Class ^P	True Positive	False Negative
Ν	False Positive	True Negative
	\widehat{P} Predicte	\widehat{N} ed Class

True Positive Rate = True Positive / P

True Negative Rate = True Negative / N = 1 - False Positive Rate (FP/N)

Prediction of House Price (housing.csv) Classification Problem Logistic Regression

Testing of the Models

Classification
High
Low
Low
Low
) 5

THANK YOU

SBIR: RAE (Realize, Analyze, Engage) - A digital biomarker based detection and intervention system for stress and carvings during recovery from substance abuse disorders. *PIs: M. Reinhardt, S. Carreiro, P. Indic*

STARs Award

The University of Texas System *P. Indic (PI, UT Tyler)*

Research Design & Data Analysis Lab Office of Research, Scholarship, and Sponsored Programs

E.G. Smith (Project PI, VA)

Design of a wearable sensor system and associated algorithm to track suicidal ideation from movement variability and develop a novel objective marker of suicidal ideation and behavior risk in veterans. Clinical Science Research and Development Grant (approved for funding), **P. Indic (site PI, UT-Tyler)**

P. Salvatore (Investigator, Harvard University)

NIH

Pre-Vent

National Institute Of Health Grant *P. Indic (Analytical Core PI, UT-Tyler) N. Ambal (PI, Univ. of Alabama, Birmingham)*

ViSiON

National Institute Of Health Grant *P. Indic (Co-Investigator & site PI , UT-Tyler) P. Ramanand (Co-Investigator, UT-Tyler) N. Ambal (PI, Univ. of Alabama, Birmingham)*

JTTyler Center for Health Informatics & Analytics

QUESTIONS