Logistic Regression

Samantha Estrada PhD
ORSSP Research Design & Data Analysis Lab Consultant
Assistant Professor of Psychology
Dependent Variable

Independent Variable

X1 Horn length
X2 Mane color
X3 Coat Color
X4 Speed
Applications of Logistic Regression

• Retention studies
 – i.e., want to examine factors which predict whether college students will or will not stay in school

• Marriage/family studies
 – e.g., might look at variables which predict which couples will or will not divorce or factors which predict

• Medical research
 – Factors distinguishing between those who will and will not survive (e.g., surgery, a particular illness, etc.)
Logistic Regression

- Since logistic regression is nonparametric, you have more flexibility with variables because there are no normality assumptions.
- The outcome variable is categorical. The predictor variables can be a mix of categorical or continuous variables.
- Logistic regression is all about predicting the odds that a given outcome will occur.
 - Odds are different than probabilities.
 - Probabilities range from 0-1
 - Odds can range from negative infinity to positive infinity.
 - Positive odds means a thing is more likely to occur, and negative odds mean a thing is less likely to occur.
Brief Probability Review

• Probabilities are simply the likelihood that something will happen; a probability of .20 of rain means that there is a 20% chance of rain.

• If there is a 20% chance of rain, then there is an 80% chance of no rain; the odds, then, are:

\[\text{Odds} = \frac{\text{prob(rain)}}{\text{prob(norain)}} = \frac{20}{80} = \frac{1}{4} = .25 \]

• Remember that probability can range from 0 to 1. But the odds can be greater than 1.
 – For instance, a 50% chance of rain has odds of 1.
Odds Ratio

• Odds ratio (OR) is the effect size for logistic regression
• Odds ratios greater than 1 = increase of the odds of that outcome
• Odds ratios less than 1 = decrease in the odds of that outcome.
• The comparison group is the group coded as 0.
 – So if your odds ratio is greater than 1, you have an increase in the odds of being in the 1 group.
 – Less than 1 decrease in odds of the 1 group (or increase in the 0 group).
Sample Size Requirements

• In terms of the adequacy of sample sizes, the literature has not offered specific rules applicable to logistic regression (Peng et al., 2002).

• Several authors on multivariate statistics (Tabachnick & Fidell, 2019) have recommended:
 – A minimum ratio of 10 (observations) to 1 (variable), with a minimum sample size of 100 or 50
Example: Logistic Regression

Data
The dataset for this example contains N = 275 observations and seven variables. In the following example we would like to predict heart attacks in males from the following data:

- **Nominal DV**: Heart Attack where 0=no heart attack and 1=heart attack.
- **Continuous IV**: AGE in years
- **Continuous IV**: Systolic blood pressure (SYSBP)
- **Continuous IV**: Diastolic blood pressure (DIABP)
- **Continuous IV**: Cholesterol (CHOLES)
- **Continuous IV**: Height (HT) height in inches
- **Continuous IV**: Weight (WT) weight in pounds

Research Question
Do body weight, height, blood pressure and age have an influence on the probability of having a heart attack (yes vs. no)?
Logistic Regression in R

Installing the package for logistic regression
install.packages("caTools")
Loading the packages
library(caTools)
library(haven) # I use this package to import SPSS files

Next we import the file this can be done manually via the point and click option or via code.

Loading the file
library(haven)
logistic.dat <-
as.data.frame(read_sav("~/Library/CloudStorage/OneDrive-TheUniversityofTexasatTyler/Teaching GD/PSYC 5340/PPT/8.5 Logistic Regression/logisitic.sav"))
If using R studio
Descriptive info

```r
summary(logistic.dat)
```

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>sysbp</th>
<th>diabp</th>
<th>choles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>23.00</td>
<td>90.00</td>
<td>55.00</td>
<td>135.0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>36.00</td>
<td>110.0</td>
<td>75.50</td>
<td>254.0</td>
</tr>
<tr>
<td>Median</td>
<td>45.00</td>
<td>120.0</td>
<td>80.00</td>
<td>285.0</td>
</tr>
<tr>
<td>Mean</td>
<td>45.03</td>
<td>124.2</td>
<td>82.97</td>
<td>297.3</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>52.00</td>
<td>130.0</td>
<td>90.00</td>
<td>336.5</td>
</tr>
<tr>
<td>Max.</td>
<td>70.00</td>
<td>190.0</td>
<td>112.0</td>
<td>520.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ht</th>
<th>wt</th>
<th>coron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>62.00</td>
<td>108.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>67.00</td>
<td>150.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>Median</td>
<td>68.00</td>
<td>166.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>Mean</td>
<td>68.45</td>
<td>167.7</td>
<td>0.3636</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>70.00</td>
<td>181.0</td>
<td>1.0000</td>
</tr>
<tr>
<td>Max.</td>
<td>74.00</td>
<td>262.0</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Frequency of the Dependent Variable

```r
library(tidyverse)
library(formattable)

logistic.dat %>%
group_by(coron) %>%
summarize(Freq=n()) %>%
mutate(freq = percent(Freq / sum(Freq))) %>%
arrange(desc(Freq))
```

A tibble: 2 x 3

<table>
<thead>
<tr>
<th>coron</th>
<th>Freq</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td><dbl></td>
<td><int></td>
<td><formttbl></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>175 63.64%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100 36.36%</td>
</tr>
</tbody>
</table>

63.6% of the patients have not had a heart attack, and 36.4% of the patients have had one.
Collinearity

- We don’t want to have variables that explain the same thing in our regression, or that are too highly correlated.
- Logistic regression does not have to meet the assumptions of normality or heterogeneity of variance, but we do have to check for multicollinearity.
• We will do Simple Linear Regression to find the multicollinearity indicators

```
# Simple Linear Regression
model = lm(corn ~ age + sysbp + diabp + choles + ht + wt, data = logistic.dat)
```

\[y = b_1x_1 + b_2x_2 + \ldots + b_nx_n + c \]
Collinearity Diagnostics

```r
install.packages("olsrr")
library(olsrr)

ols_vif_tol(model)
```

```
## Variables Tolerance      VIF
## 1 age   0.6363933 1.571355
## 2 sysbp 0.2798345 3.573540
## 3 diabp 0.2694661 3.711041
## 4 choles 0.8096193 1.235148
## 5 ht     0.7425696 1.346675
## 6 wt     0.7023589 1.423774
```

Everything looks good according to our rules of thumb VIF < 10 and Tolerance > .01
Code: Logistic Regression

```r
logistic_model = glm(coron ~ age + sysbp + diabp + choles + ht + wt,
    data = logistic.dat,
    family = "binomial")

y = b_1x_1 + b_2x_2 + ... + b_nx_n + c

# Summary
summary(logistic_model)
```
Call:
```
glm(formula = coron ~ age + sysbp + diabp + choles + ht + wt,
    family = "binomial", data = logistic.dat)
```

Deviance Residuals:
```
    Min       1Q   Median       3Q      Max
-1.8538  -0.8391  -0.4360   0.8906   1.9273
```

Coefficients:
```
                  Estimate Std. Error   z value  Pr(>|z|)
(Intercept)    -5.328605   5.076190  -1.0500  0.29384
age             0.072286   0.016487   4.3840 1.16e-05 ***
sysbp           0.012845   0.014852   0.8650  0.38708
diabp          -0.029113   0.026398  -1.1030  0.27009
choles          0.007676   0.002390   3.2119  0.00132 **
ht              -0.053164   0.070796  -0.7511  0.45269
wt              0.020838   0.006768   3.0789  0.00208 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 360.51 on 274 degrees of freedom
Residual deviance: 288.26 on 268 degrees of freedom
AIC: 302.26

Number of Fisher Scoring iterations: 4
Model Fit & Effect Size

Under the **Model Fit submenu** select Deviance, Overall model test, and all the pseudo R^2

1. **Deviance:** This stat shows the predictive success of the model. The smaller the number, the better the model (in SPSS this is called 2 Log Likelihood in case you ever need to know).

2. Cox & Snell R^2 and Nagelkerke R^2 :*These two numbers in the model summary box are similar to R^2 in multiple regression (a proportion of the variance in the DV accounted for by the variables in model). We will report both of them as “% of variance accounted for”.

 – **Effect size notes:** Cox and Snell R^2 based on likelihoods and sample size BUT never can reach 1, even if you achieve perfect fit.

 – Use Nagelkerke R^2 which adjusts Cox and Snell so that the upper limit is 1 (most people report this type of effect size.)
Call:

```
glm(formula = coron ~ age + sysbp + diabp + choles + ht + wt,
    family = "binomial", data = logistic.dat)
```

Deviance Residuals:

```
     Min       1Q   Median       3Q      Max
-1.8538 -0.8391 -0.4360   0.8906   1.9273
```

Coefficients:

```
                         Estimate Std. Error   z value  Pr(>|z|)
(Intercept)            -5.328605   5.076190  -1.050  0.29384
age                   -0.072286   0.016487   4.384 1.16e-05 ***
sysbp                  -0.012845   0.014852   0.865  0.38708
diabp                 -0.029113   0.026398  -1.103  0.27009
choles                 0.007676   0.002390   3.212  0.00132 **
ht                     -0.053164   0.070796  -0.751  0.45269
wt                     -0.020838   0.006768   3.079  0.00208 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 360.51 on 274 degrees of freedom
Residual deviance: 288.26 on 268 degrees of freedom
AIC: 302.26

Number of Fisher Scoring iterations: 4
Model Fit & Effect Size

Under the Model Fit submenu select Deviance, Overall model test, and all the pseudo R^2.

1. **Deviance**: This stat shows the predictive success of the model. The smaller the number, the better the model (in SPSS this is called 2 Log Likelihood in case you ever need to know).

2. **Cox & Snell R^2 and Nagelkerke R^2**: These two numbers in the model summary box are similar to R^2 in multiple regression (a proportion of the variance in the DV accounted for by the variables in model). We will report both of them as “% of variance accounted for”.
 - **Effect size notes**: Cox and Snell R^2 based on likelihoods and sample size BUT never can reach 1, even if you achieve perfect fit.
 - Use Nagelkerke R^2 which adjusts Cox and Snell so that the upper limit is 1 (most people report this type of effect size.)
#install and load DescTools package
install.packages('DescTools')
library(DescTools)

#calculate pseudo R-squared for model
PseudoR2(logistic_model, c("McFadden", "Nagel", "CoxSnell"))
McFadden Nagelkerke CoxSnell
0.2004085 0.3163152 0.2310492
Code: Odds Ratio

#Odds Ratio
exp(coef(logistic_model))

(Intercept) age sysbp diabp choles ht
0.004850832 1.074962215 1.012928265 0.971306984 1.007705705 0.948224528
wt
1.021056162
Interpreting Odds Ratio

What if...?

• **Scenario 1** Imagine height was significant and the odds ratio (OR) was .94. Then we would interpret the odds ratio like this:

 The odds ratio indicates that for every unit increase in height the odds of the outcome decrease by a factor of .94.

Odds Ratio for Categorical Variables

• **Scenario 2** Imagine that Weight is a categorical variable coded as in Weight = 0 means “not overweight” and Weight = 1 is “overweight.” Then we would interpret the odds ratio like this:

 The odds that a person will experience the outcome are 1.02 times higher for those who are overweight than for those who are not.
Resources

• Research Design & Data Analysis Lab: https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/

• Schedule a consultant appointment with me: https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/ors-research-design-data-analysis-data-analysis-lab-consultants/

• Check out Lab Resources (including recording of this webinar): https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/resources/
References

