Logistic Regression Using R

Samantha Estrada PhD ORSSP Research Design & Data Analysis Lab Consultant Assistant Professor of Psychology

Dependent Variable

Yes/No 1/0

Independent Variable

X1 Horn length

X2 Mane color

X3 Coat Color

X4 Speed

Applications of Logistic Regression

- Retention studies
 - i.e., want to examine factors which predict whether college students will or will not stay in school
- Marriage/family studies
 - e.g., might look at variables which predict which couples will or will not divorce or factors which predict
- Medical research
 - Factors distinguishing between those who will and will not survive (e.g., surgery, a particular illness, etc.)

Logistic Regression

- Since logistic regression is nonparametric, you have more flexibility with variables because there are no normality assumptions.
- The outcome variable is categorical. The predictor variables can be a mix of categorical or continuous variables
- Logistic regression is all about predicting the *odds* that a given outcome will occur.
 - Odds are different than probabilities.
 - Probabilities range from 0-1
 - Odds can range from negative infinity to positive infinity.
 - Positive odds means a thing is more likely to occur, and negative odds mean a thing is less likely to occur

Brief Probability Review

- Probabilities are simply the likelihood that something will happen; a probability of .20 of rain means that there is a 20% chance of rain.
- If there is a 20% chance of rain, then there is an 80% chance of no rain; the odds, then, are:

$$Odds = \frac{prob(rain)}{prob(norain)} = \frac{20}{80} = \frac{1}{4} = .25$$

- Remember that probability can range from 0 to 1. But the odds can be greater than 1.
 - For instance, a 50% chance of rain has odds of 1.

Odds Ratio

- Odds ratio (OR) is the effect size for logistic regression
- Odds ratios greater than 1 = increase of the odds of that outcome
- Odds ratios less than 1 = decrease in the odds of that outcome.
- The comparison group is the group coded as 0.
 - So if your odds ratio is greater than 1, you have an increase in the odds of being in the 1 group.
 - Less than 1 decrease in odds of the 1 group (or increase in the 0 group).

Sample Size Requirements

- In terms of the adequacy of sample sizes, the literature has not offered specific rules applicable to logistic regression (Peng et al., 2002).
- Several authors on multivariate statistics (Tabachnick & Fidell, 2019) have recommended:
 - A minimum ratio of 10 (observations) to 1 (variable), with a minimum sample size of 100 or 50

Example: Logistic Regression

Data

The dataset for this example contains N = 275 observations and seven variables. In the following example we would like to predict heart attacks in males from the following data:

- Nominal DV: Heart Attack where O=no heart attack and 1=heart attack.
- Continuous IV: AGE in years
- Continuous IV: Systolic blood pressure (SYSBP)
- Continuous IV: Diastolic blood pressure (DIABP)
- Continuous IV: Cholesterol (CHOLES)
- Continuous IV: Height (HT) height in inches
- Continuous IV: Weight (WT) weight in pounds

Research Question

Do body weight, height, blood pressure and age have an influence on the probability of having a heart attack (yes vs. no)?

Logistic Regression in R

Installing the package for logistic regression install.packages("caTools") # Loading the packages library(caTools) library(haven) #I use this package to import SPSS files

Next we import the file this can be done manually via the point and click option or via code.

```
# Loading the file
library(haven)
logistic.dat <-
as.data.frame(read_sav("~/Library/CloudStorage/OneDrive-
TheUniversityofTexasatTyler/Teaching GD/PSYC 5340/PPT/8.5
Logistic Regression/logisitic.sav"))
```

If using R studio

File	Edit	Code	View	Plots	Session	n Build	Debug
New I	File				>		
New I	Project						
Open	File				жΟ		
Open	File in	New Col	umn				
Reop	en with	Encodin	ıg				
Recei	nt Files				>		
Open	Projec	t					
Open	Projec	t in New	Session				
Recei	nt Proje	ects			>		
Impor	rt Datas	set			>	From Tex	t (base)
Save					жs	From Tex	t (readr)
Save	As					From Exc	el
Renar	me					Erom CDC	<u>`c</u>
Save	with En	coding	•			From SAS	
Save	All			-	⊂₩S	From Stat	ta
Knit D	Docume	ent		4	ѽӝҜ		
Publis	sh						
Print.							
Close	•				жW		
Close	All			4	ЪжW		
Close	All Exc	cept Curi	rent	77	℃¥W		
Close	Projec	t					
Quit S	Session				жQ		

File

Descriptives

Descriptive info summary(logistic.dat)

##	age	sysbp	diabp	choles
##	Min. :23.00	Min. : 90.0	Min. : 55.00	Min. :135.0
##	1st Qu.:36.00	1st Qu.:110.0	1st Qu.: 75.50	1st Qu.:254.0
##	Median :45.00	Median :120.0	Median : 80.00	Median :285.0
##	Mean :45.03	Mean :124.2	Mean : 82.97	Mean :297.3
##	3rd Qu.:52.00	3rd Qu.:130.0	3rd Qu.: 90.00	3rd Qu.:336.5
##	Max. :70.00	Max. :190.0	Max. :112.00	Max. :520.0
##	ht	wt	coron	
##	Min. :62.00	Min. :108.0	Min. :0.0000	
##	1st Qu.:67.00	1st Qu.:150.0	1st Qu.:0.0000	
##	Median :68.00	Median :166.0	Median :0.0000	
##	Mean :68.45	Mean :167.7	Mean :0.3636	
##	3rd Qu.:70.00	3rd Qu.:181.0	3rd Qu.:1.0000	
##	Max. :74.00	Max. :262.0	Max. :1.0000	

Frequencies

```
# Frequency of the Dependent Variable
library(tidyverse)
library(formattable)
logistic.dat %>%
  group_by(coron) %>%
  summarize(Freq=n()) %>%
  mutate(freq = percent(Freq / sum(Freq))) %>%
  arrange(desc(Freq))
```

```
## # A tibble: 2 × 3
## coron Freq freq
## <dbl> <int> <formttbl>
## 1 0 175 63.64%
## 2 1 100 36.36%
```

63.6% of the patients have not had a heart attack, and 36.4% of the patients have had one.

Collinearity

- We don't want to have variables that explain the same thing in our regression, or that are too highly correlated.
- Logistic regression does not have to meet the assumptions of normality or heterogeneity of variance, but we do have to check for multicollinearty.

• We will do Simple Linear Regression to find the multicollinearity indicators

Simple Linear Regression
model = lm(coron ~ age + sysbp + diabp +
choles + ht + wt, data = logistic.dat)

$$y = b_1 x_1 + b_2 x_2 + ... + b_n x_n + c$$

Collinearity Diagnostics
install.packages("olsrr")
library(olsrr)

ols_vif_tol(model)

##		Variables	Tolerance	VIF
##	1	age	0.6363933	1.571355
##	2	sysbp	0.2798345	3.573540
##	3	diabp	0.2694661	3.711041
##	4	choles	0.8096193	1.235148
##	5	ht	0.7425696	1.346675
##	6	wt	0.7023589	1.423774

Everything looks good according to our rules of thumb VIF < 10 and Tolerance > .01

Code: Logistic Regression

 $y = b_1 x_1 + b_2 x_2 + ... + b_n x_n + c$

Summary
summary(logistic model)

Call: ## glm(formula = coron ~ age + sysbp + diabp + choles + ht + wt, **REGRESSION EQUATION** ## family = "binomial", data = logistic.dat) ## Deviance Residuals: ## ## Min 10 Median 30 Max ## -1.8538 -0.8391 -0.43600.8906 1,9273 ## В ## Coefficients: Estimate Std. Error z value Pr(>|z|) - P-VALUFS ## ## (Intercept) -5.328605 -1.050 0.29384 5.076190 0.072286 ## age 0.016487 4.384 1.16e-05 *** 0.012845 0.014852 0.865 0.38708 ## sysbp ## diabp -0.029113 0.026398 -1.103 0.27009 0.007676 0.002390 3.212 0.00132 ** ## choles -0.053164 ## ht 0.070796 - 0.751 0.45269## wt 0.020838 0.006768 3.079 0.00208 ** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## ## Null deviance: 360.51 on 274 degrees of freedom ## Residual deviance: 288.26 on 268 degrees of freedom ## AIC: 302.26 ## ## Number of Fisher Scoring iterations: 4

Model Fit & Effect Size

Under the Model Fit submenu select Deviance, Overall model test, and all the pseudo \mathbb{R}^2

- 1. Deviance: This stat shows the predictive success of the model. The smaller the number, the better the model (in SPSS this is called 2 Log Likelihood in case you ever need to know).
- 2. Cox & Snell R^2 and Nagelkerke R^2 :*These two numbers in the model summary box are similar to R^2 in multiple regression (a proportion of the variance in the DV accounted for by the variables in model). We will report both of them as "% of variance accounted for".
 - Effect size notes: Cox and Snell R^2 based on likelihoods and sample size BUT never can reach 1, even if you achieve perfect fit.
 - Use Nagelkerke R^2 which adjusts Cox and Snell so that the upper limit is 1 (most people report this type of effect size.)

##_Call:

# # # #	<pre>glm(formula = coron ~ age + sysbp + diabp + choles + ht + wt, family = "binomial", data = logistic dat)</pre>
##	ramity binomial , aada rogibero.aad
##	Deviance Residuals:
##	Min 1Q Median 3Q Max
##	-1.8538 -0.8391 -0.4360 0.8906 1.9273
##	
##	Coefficients:
##	Estimate Std. Error z value Pr(> z)
##	(Intercept) -5.328605 5.076190 -1.050 0.29384
##	age 0.072286 0.016487 4.384 1.16e-05 ***
##	sysbp 0.012845 0.014852 0.865 0.38708
##	diabp -0.029113 0.026398 -1.103 0.27009
##	choles 0.007676 0.002390 3.212 0.00132 **
##	ht -0.053164 0.070796 -0.751 0.45269
##	wt 0.020838 0.006768 3.079 0.00208 **
##	
##	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##	
##	(Dispersion parameter for binomial family taken to be 1)
## ##	Null device and 200 E1 on 274 degrees of freeder
# # # #	Residual deviance: 288 26 on 268 degrees of freedom
## ##	
ππ ##	
ππ ##	Number of Fisher Scoring iterations: 4
	Name of field booting footations.

Model Fit & Effect Size

Under the Model Fit submenu select $\mbox{Deviance, Overall model test,}$ and all the pseudo R^2

- 1. Deviance: This stat shows the predictive success of the model. The smaller the number, the better the model (in SPSS this is called 2 Log Likelihood in case you ever need to know).
- 2. Cox & Snell R^2 and Nagelkerke R^2 :*These two numbers in the model summary box are similar to R^2 in multiple regression (a proportion of the variance in the DV accounted for by the variables in model). We will report both of them as "% of variance accounted for".
 - Effect size notes: Cox and Snell R^2 based on likelihoods and sample size BUT never can reach 1, even if you achieve perfect fit.
 - Use Nagelkerke R^2 which adjusts Cox and Snell so that the upper limit is 1 (most people report this type of effect size.)

Pseudo R²

#install and load DescTools package
install.packages('DescTools')
library(DescTools)

#calculate pseudo R-squared for model
PseudoR2(logistic_model, c("McFadden", "Nagel",
"CoxSnell"))

- ## McFadden Nagelkerke CoxSnell
- ## 0.2004085 0.3163152 0.2310492

Code: Odds Ratio

#Odds Ratio

exp(coef(logistic_model))

(Intercept) age sysbp diabp choles ht
0.004850832 1.074962215 1.012928265 0.971306984 1.007705705 0.948224528
wt
1.021056162

Interpreting Odds Ratio

What if...?

• Scenario 1 Imagine height was significant and the odds ratio (OR) was .94. Then we would interpret the odds ratio like this:

The odds ratio indicates that for every unit increase in height the odds of the outcome decrease by a factor of .94.

Odds Ratio for Categorical Variables

Scenario 2 Imagine that Weight is a categorical variable coded as in Weight = 0 means "not overweight" and Weight = 1 is "overweight." Then we would interpret the odds ratio like this:

The odds that a person will experience the outcome are 1.02 times higher for those who are overweight than for those who are not.

Resources

- Research Design & Data Analysis Lab: <u>https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/</u>
- Schedule a consultant appointment with me: <u>https://www.uttyler.edu/research/ors-research-design-data-</u> <u>analysis-lab/ors-research-design-data-analysis-lab-consultants/</u>
- Check out Lab Resources (including recording of this webinar): <u>https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/resources/</u>

References

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. *The Journal of Educational Research*, *96*(1), 3–14.

Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., & Arppe, A. (2016). DescTools: Tools for descriptive statistics. R package version 0.99. 18. *R Found. Stat. Comput., Vienna, Austria*.

Tabachnick, B. G., & Fidell, L. S. (2019). *Using multivariate statistics*. Pearson.