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DEEPMIND Al
LEARNED HOW TO WALK

Autonomous Vehicles ,
Computer Learning to Walk



http://www.youtube.com/watch?v=tlThdr3O5Qo
http://www.youtube.com/watch?v=gn4nRCC9TwQ
http://www.youtube.com/watch?v=fRj34o4hN4I

/A.l. TIMELINE
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1950

TURING TEST
Computer scientist
Alan Turing proposes a
test for machine
intelligence. If a
machine can trick
humans into thinking it
is human, then it has
intelligence

@

1955

A.l. BORN
Term ‘artificial
intelligence’ is coined

by computer scientist,

John McCarthy to
describe “the science
and engineering of
making intelligent
machines”

1961

UNIMATE

First industrial robot,
Unimate, goes to work
at GM replacing
humans on the
assembly line

1964

ELIZA

Pioneering chatbot
developed by Joseph
Weizenbaum at MIT
holds conversations
with humans

SHAKEY

The “first electronic
person’ from Stanford,
Shakey is a general-
purpose mobile robot
that reasons about

its own actions

-

Al
WINTER

Many false starts and

dead-ends leave A.l. out

in the cold

1997

DEEP BLUE

Deep Blue, a chess-
playing computer from
IBM defeats world chess
champion Garry
Kasparov

1998

KISMET

Cynthia Breazeal at MIT
introduces KiSmet, an
emotionally intelligent
robot insofar as it
detects and responds
to people’s feelings

’\ AlphaGo

®

1999

AIBO
Sony launches first

consumer robot pet dog

AiIBO (Al robot) with
skills and personality
that develop over time

ROOMBA

First mass produced
autonomous robotic
vacuum cleaner from

iRobot learns to navigate

and clean homes

2011

SIRI

Apple integrates Siri,
an intelligent virtual
assistant with a voice
interface, into the
iPhone 4S5

2011

WATSON

IBM’s question
answering computer
Watson wins first place
on popular $1M prize
television quiz show
Jeopardy

®
2014

EUGENE

Eugene Goostman, a
chatbot passes the
Turing Test with a third
of judges believing
Eugene is human

2014

ALEXA
Amazon launches Alexa,

an intelligent virtual
assistant with a voice

interface that completes

shopping tasks

2016

TAY

Microsoft’s chatbot Tay
goes rogue on social
media making
inflammatory and
offensive racist
comments

2017

ALPHAGO
Google’s A.l. AlphaGo
beats world champion
Ke Jie in the complex
board game of Go,
notable for its vast
number (2'79) of
possible positions




How close are we to a
perfect Al?

Turing Test

PASS FAIL

©-0




—==— Eugene Goostman
ol ll | THE WEIRDEST CREATURE IN THE WORLD

Type your question here:
Am | a computer or a 13-year-old boy?

reply
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Artificial Intelligence

Machine Learning
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Reinforcement
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ML / Al

e ML /Al is atechnological analogy of a KID!!
e |Learning from Examples
e The same way as humans learn: By looking at the same thing 1000’s of times.




Raw Data
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DATA SPLITTING

e Improper Data Splitting

e TARGET: Prevent Data Leakage

Dataset

Training

Testing

Cross Validation

Data Permitting:

Training

N/

Validation

PN

)

Testing

110101
110001
1001 Data Leakage

Holdout Method

Training, Validation, Testing

Joseph MNelson @ josephofiowa



Overfitting vs Underfitting

Underfitting % Balanced

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://vitalflux.com/overfitting-underfitting-concepts-interview-questions/

Error

>
X

Overfitting

< Underfitting | Overfitting =

Best! Fit

—~IrQining Frre,

Model “complexity”


https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Machine Learning
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Input Feature extraction Classification Output




Machine Learning
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Supervised Learning

Supervised learning

input data Predicted output

v

Fish Biaar Apple model/algorithm

T, , A

labeled data (by supervisor)

https://www.scribbr.co.uk/using-ai-tools/supervised-unsupervised-learning/



Unsupervised Learning

Unsupervised learning

unlabeled input data

(
.
{
-
h
5

model/algorithm

< Scribbr

https://www.scribbr.co.uk/using-ai-tools/supervised-unsupervised-learning/



Reinforcement Learning
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Behind The Scenes!!
Machine Learning

&k 57 -l

Input Feature extraction Classification Output

Deep Learning/E2E

Input Feature extraction Classification Output

G | |&y — s5e 7




https://www.superannotate.com/blog/how-to-optimize-machine-learning-pipeline



Raw input data

Supervisor

— ¥

Training Data Set Desired Output

W
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@ Q {lLl 212 ]

Algorithm

Unknown
observation

Making prediction on
unknown observations




Training

Feature extraction ‘ ) ) )
Feature Scaling Model Selection Hold-out
Feature Selecti i ldati
eature Selection Perfnrme,nce_ Metrics Cross-validation
Feature Encoding Validation
Dimensionality Reduction Hyperparamete- Optimization Bootstrap
Sampling
"\. & LN =
. 4 ‘

&
Training set ® @
Raw data PP o Learning
- @ - Algorithms ‘
label |} Test set ® Final Model
Data preprocessing \ Learning ,_ Evaluation

https://www.researchgate.net/figure/The-fundamental-machine-learning-procedure-to-achieve-a-final-model-Full-size-DOI_figl_351635693



Metrics

https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4



Metrics

Model Performance Metrics

Classification Models

Class Labels

/\ Probabilities

Balanced Dataset Imbalanced Dataset 1. Confusion Matrix
2. ROC Curve- AUC Score

1. Confusion Matrix 1. Confusion Matrix 3. PR Curve
2. Type | Error 2. F1 Score
3. Type Il Error 3. Type | Error
4, Accuracy 4, Type Il Error

&. Recall

6. Precision

https://mww.markovml.com/blog/key-machine-learning-metrics-for-assessing-model-performance



Machine Learning Tasks

e Regression

e Classification

e Detection

e Segmentation
o Semantic
o Instance

e Tracking

e Generation



Machine Learning Tasks

Classification Regression




Machine Learning Tasks: Detection, Segmentation

Semantic Object Instance

Classification Segmentation Detection Segmentation

CAT GRASS, i
“ , \__ TREE, SKY

Z A
Y Y

No spatial extent No objects, just pixels Multiple Object i vace = COD bl ok




Machine Learning Tasks : Tracking




Machine Learning Tasks : Generation

LLM

LARGE LANGUAGE MODEL

https://www.uctoday.com/unified-communications/what-is-a-large-language-model-defining-lims/



Machine Learning Tasks : Generation

webclues

Type your prompt here

Generative Artificial Intelligence ’

Audio Images

/e
T |
&

2

=

Text




Machine Learning Tasks : Generation

Generative Al

Missing Data
Synthetic Data
Quality and Quantity

Lack of Control



Machine Learning Tasks : Generation

Generative Al Market B=EVvVE

Size, by Component, 2020 - 2030 (USD Billion) GRAND VIEW RESEARCH

37.6%

Global Market CAGR,
2025 - 2030

[ III

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

@ Software Services

https://www.grandviewresearch.com/industry-analysis/generative-ai-market-report



TRAINING FROM SCRATCH

CAR v
_.[ eas m “um [935;6] TRUCK X
- - BICYCLE X
TRANSFER LEARNING

CAR v
e
= - TRUCK X




Explanations vs
Interpretability

o Are the explanations
interpretable?

BLACK
BOX

OUTPUT

e Evaluating Explanations

Reliability of Explanations

Insufficiency of human
judgment to validate XAl




eXplainable Al (XAl)

e To understand Why and How Neural Networks do what they do??
o Images: GradCam
o Signals: CEFEs (This Oneis by me !)
o Tabular: SHAP
o Lime, ELI5

Grad-CAM for “Cat” Grad-CAM for “Dog"”
V- = :




Facilitating Al / ML

e EXxperts-in-the-loop

e Formal definitions
o Problem

o Explanations

m TASK
m DATA MODALITY

m STAKEHOLDER




@ Challenges in Development
Challenges in Adoption

@ Challenges in Deployment
@ Challenges in Implementation

C
H
A
L
L
=
N
G
=
S




Challenges in Development

* High quality
* Large quantity

» Disparate Impact
« Skewed Learning

» Model Drift
* False Positives and Negatives

Robusthess




Challenges in Adoption

PEIER LN E(GAS - Data security
and Security BERZOCHAIOCE]

Ethical and - Ethical dilemmas
Legal - Inequitable care.
Concerns - Liability and accountability

* Job displacement
» Lack of trust in technology
» Complexity of integrating

Resistance to
Change




Challenges in Deployment

« High computational power
Scalability - Secure data storage
* Reliable network access

Compliance * FDA (U.S.) and EMA (Europe)
require evidence of safety and

- Wlltlt1' efficacy for Al-driven
egulations applications

Monitoring
and
Maintenance

* Evolving knowledge, protocols
« Continuous retraining




Challenges in Implementation

Integration with
Existing
Systems

Legacy Systems

Diverse and fragmented data sources

Interoperability

EHR systems, medical devices and

imaging platforms

- Training to use Al tools
Training and

Usability

Lack of user-friendly interfaces




Thank you Dr. Sagnik Dakshit

sdakshit@uttyler.edu
www.sagnikdakshit.com



mailto:sdakshit@utdallas.edu
mailto:sdakshit@utdallas.edu
mailto:sdakshit@utdallas.edu
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